
Generating Configurable Hardware from Parallel Patterns

Raghu Prabhakar
Stanford University

raghup17@stanford.edu

David Koeplinger
Stanford University

dkoeplin@stanford.edu

Kevin J. Brown
Stanford University

kjbrown@stanford.edu

HyoukJoong Lee
Stanford University

Google, USA
hyouklee@stanford.edu

Christopher De Sa
Stanford University
cdesa@stanford.edu

Christos Kozyrakis
Stanford University

EPFL
kozyraki@stanford.edu

Kunle Olukotun
Stanford University
kunle@stanford.edu

Abstract
In recent years the computing landscape has seen an in-
creasing shift towards specialized accelerators. Field pro-
grammable gate arrays (FPGAs) are particularly promising
for the implementation of these accelerators, as they of-
fer significant performance and energy improvements over
CPUs for a wide class of applications and are far more flex-
ible than fixed-function ASICs. However, FPGAs are diffi-
cult to program. Traditional programming models for recon-
figurable logic use low-level hardware description languages
like Verilog and VHDL, which have none of the productivity
features of modern software languages but produce very ef-
ficient designs, and low-level software languages like C and
OpenCL coupled with high-level synthesis (HLS) tools that
typically produce designs that are far less efficient.

Functional languages with parallel patterns are a better fit
for hardware generation because they provide high-level ab-
stractions to programmers with little experience in hardware
design and avoid many of the problems faced when gener-
ating hardware from imperative languages. In this paper, we
identify two important optimizations for using parallel pat-
terns to generate efficient hardware: tiling and metapipelin-
ing. We present a general representation of tiled parallel pat-
terns, and provide rules for automatically tiling patterns and
generating metapipelines. We demonstrate experimentally
that these optimizations result in speedups up to 39.4× on
a set of benchmarks from the data analytics domain.

Keywords Hardware generation; tiling; metapipelining;
parallel patterns; reconfigurable hardware; FPGAs

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, contact the Owner/Author. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax
+1 (212) 869-0481. Copyright 2016 held by Owner/Author. Publication Rights Licensed to ACM.

ASPLOS ’16 April 2–6, 2016, Atlanta, Georgia, USA.
Copyright c© 2016 ACM 978-1-4503-4091-5/16/04. . . $15.00
DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2872362.2872415

1. Introduction
The slowdown of Moore’s law and the end of Dennard scal-
ing has forced a radical change in the architectural land-
scape. Computing systems are becoming increasingly par-
allel and heterogeneous, relying on larger numbers of cores
and specialized accelerators. Field programmable gate ar-
rays (FPGAs) are particularly promising as an acceleration
technology, as they can offer performance and energy im-
provements for a wide class of applications while also pro-
viding the reprogrammability and flexibility of software. Ap-
plications which exhibit large degrees of spatial and tempo-
ral locality and which contain relatively small amounts of
control flow, such as those in the image processing [22, 7],
financial analytics [31, 17, 53], and scientific computing do-
mains [45, 2, 12, 55], can especially benefit from hardware
acceleration with FPGAs. FPGAs have also recently been
used to accelerate personal assistant systems [24] and ma-
chine learning algorithms like deep belief networks [33, 34].

The performance and energy advantages of FPGAs are
now motivating the integration of reconfigurable logic into
data center computing infrastructures. Both Microsoft [40]
and Baidu [33] have recently announced such systems.
These systems have initially been in the form of banks of
FPGA accelerators which communicate with CPUs through
Infiniband or PCIe [30]. Work is also being done on het-
erogeneous motherboards with shared CPU-FPGA memory
[23]. The recent acquisition of Altera by Intel suggests that
systems with tighter, high performance on-chip integration
of CPUs and FPGAs are now on the horizon.

The chief limiting factor in the general adoption of FP-
GAs is that their programming model is currently inacces-
sible to most software developers. Creating custom acceler-
ator architectures on an FPGA is a complex task, requiring
the coordination of large numbers of small, local memories,
communication with off-chip memory, and the synchroniza-
tion of many compute stages. Because of this complexity,

Parallel
Pattern

IR

Pattern Transformations
Fusion

Pattern Tiling

Tiled
Parallel

Pattern IR

Hardware Generation
Memory Allocation
Template Selection

Metapipeline Analysis

Max
J

HDL

Bitstream
Generati

on

FPGA
Config.

Pattern Transformations
Fusion

Pattern Tiling
Code Motion

Hardware Generation
Memory Allocation
Template Selection

Metapipeline Analysis

MaxJ
HDL
DSL

Program
Parallel

Pattern IR
Tiled Parallel

Pattern IR
MaxJ
HGL

Bitstream
Generation

FPGA
Config.

Bitstre
am

Genera
tion

Staging

Figure 1. System diagram

attaining the best performance on FPGAs has traditionally
required detailed hardware design using hardware descrip-
tion languages (HDL) like Verilog and VHDL. This low-
level programming model has largely limited the creation
of efficient custom hardware to experts in digital logic and
hardware design.

In the past ten years, FPGA vendors and researchers have
attempted to make reconfigurable logic more accessible to
software programmers with the development of high-level
synthesis (HLS) tools, designed to automatically infer regis-
ter transaction level (RTL) specifications from higher level
software programs. To better tailor these tools to software
developers, HLS work has typically focused on imperative
languages like C/C++, SystemC, and OpenCL [50]. Unfortu-
nately, there are numerous challenges in inferring hardware
from imperative programs. Imperative languages are inher-
ently sequential and effectful. C programs in particular offer
a number of challenges in alias analysis and detecting false
dependencies [19], typically requiring numerous user anno-
tations to help HLS tools discover parallelism and determine
when various hardware structures can be used. Achieving ef-
ficient hardware with HLS tools often requires an iterative
process to determine which user annotations are necessary,
especially for software developers less familiar with the in-
tricacies of hardware design [16].

Functional languages are a much more natural fit for
high-level hardware generation as they have limited to no
side effects and more naturally express a dataflow represen-
tation of applications which can be mapped directly to hard-
ware pipelines [6]. Furthermore, the order of operations in
functional languages is only defined by data dependencies
rather than sequential statement order, exposing significant
fine-grained parallelism that can be exploited efficiently in
custom hardware.

Parallel patterns like map and reduce are an increasingly
popular extension to functional languages which add seman-
tic information about memory access patterns and inherent
data parallelism that is highly exploitable by both software
and hardware. Previous work [20, 4] has shown that compil-
ers can utilize parallel patterns to generate C- or OpenCL-
based HLS programs and add certain annotations automat-
ically. However, like hand-written HLS, the quality of the
generated hardware is still highly variable. Apart from the
practical advantage of building on existing tools, generating
imperative code from a functional language only to have the
HLS tool attempt to re-infer a functional representation of
the program is a suboptimal solution because higher-level

semantic knowledge in the original program is easily lost. In
this paper, we describe a series of compilation steps which
automatically generate a low-level, efficient hardware de-
sign from an intermediate representation (IR) based on par-
allel patterns. As seen in Figure 1, these steps fall into two
categories: high level parallel pattern transformations (Sec-
tion 4), and low level analyses and hardware generation op-
timizations (Section 5).

One of the challenges in generating efficient hardware
from high level programs is in handling arbitrarily large data
structures. FPGAs have a limited amount of fast local mem-
ory and accesses to main memory are expensive in terms
of both performance and energy. Loop tiling has been ex-
tensively studied as a solution to this problem, as it allows
data structures with predictable access patterns to be broken
up into fixed size chunks. On FPGAs, these chunks can be
stored locally in buffers. Tiling can also increase the reuse of
these buffers by reordering computation, thus reducing the
number of total accesses to main memory. Previous work on
automated tiling transformations has focused almost exclu-
sively on imperative C-like programs with only affine, data-
independent memory access patterns. No unified procedure
exists for automatically tiling a functional IR with parallel
patterns. In this paper, we outline a novel set of simple trans-
formation rules which can be used to automatically tile par-
allel patterns. Because these rules rely on pattern matching
rather than a mathematical model of the entire program, they
can be used even on programs which contain random and
data-dependent accesses.

Our tiled intermediate representation exposes memory re-
gions with high data locality, making them ideal candidates
to be allocated on-chip. Parallel patterns provide rich se-
mantic information on the nature of the parallel computa-
tion at multiple levels of nesting as well as memory ac-
cess patterns at each level. In this work, we preserve certain
semantic properties of memory regions and analyze mem-
ory access patterns in order to automatically infer hardware
structures like FIFOs, double buffers, and caches. We exploit
parallelism at multiple levels by automatically inferring and
generating metapipelines, hierarchical pipelines where each
stage can itself be composed of pipelines and other parallel
constructs. Our code generation approach involves mapping
parallel IR constructs to a set of parameterizable hardware
templates, where each template exploits a specific parallel
pattern or memory access pattern. These hardware templates
are implemented using a low-level Java-based hardware gen-
eration language (HGL) called MaxJ.

In this paper we make the following contributions:

• We describe a systematic set of rules for tiling parallel
patterns, including a single, general pattern used to tile all
patterns with fixed output size. Unlike previous automatic
tiling work, these rules are based on pattern matching and
therefore do not restrict all memory accesses within the
program to be affine.

• We demonstrate a method for automatically inferring
complex hardware structures like double buffers, caches,
CAMs, and banked BRAMs from a parallel pattern IR.
We also show how to automatically generate metapipelines,
which are a generalization of pipelines that greatly in-
crease design throughput.

• We present experimental results for a set of benchmark
applications from the data analytics domain running on
an FPGA and show the performance impact of the trans-
formations and hardware templates presented.

2. Related Work
Tiling Previous work on automated loop tiling has largely
focused on tiling imperative programs using polyhedral
analysis [9, 37]. There are many existing tools—such as
Pluto [10], PoCC [38], CHiLL [15], and Polly [21]—that
use polyhedral analysis to automatically tile and parallelize
programs. These tools restrict memory accesses within loops
to only affine functions of the loop iterators. As a conse-
quence, while they perform well on affine sections of pro-
grams, they fail on even simple, commonly occurring data-
dependent operations such as filters and groupBys [8]. In or-
der to handle these operations, recent work has proposed us-
ing preprocessing steps which segment programs into affine
and non-affine sections prior to running polyhedral analysis
tools [51].

While the above work focused on the analysis of imper-
ative programs, our work analyzes functional parallel pat-
terns, which offer a strictly higher-level representation than
simple imperative for loops. In this paper, we show that be-
cause of the additional semantic information available in pat-
terns like groupBy and filter, parallel patterns can be auto-
matically tiled using simple transformation rules, without
the restriction that all memory accesses are purely affine.
Little previous work has been done on automated tiling of
functional programs composed of arbitrarily nested parallel
patterns. Hielscher proposes a set of formal rules for tiling
parallel operators map, reduce, and scan in the Parakeet JIT
compiler, but these rules can be applied only for a small sub-
set of nesting combinations [25]. Spartan [26] is a runtime
system with a set of high-level operators (e.g., map and re-
duce) on multi-dimensional arrays, which automatically tiles
and distributes the arrays in a way that minimizes the com-
munication cost between nodes in cluster environments. In
contrast to our work, Spartan operates on a tiled represen-

tation for distributed CPU computation and does attempt to
optimize performance on individual compute units.

Hardware from high-level languages Generating hard-
ware from high-level languages has been widely studied
for decades. CHiMPS [41] generates hardware from ANSI
C code by mapping each C language construct in a data-
flow graph to an HDL block. Kiwi [44] translates a set of
C# parallel constructs (e.g., event, monitor, and lock) to
corresponding hardware units. Bluespec [3] generates hard-
ware from purely functional descriptions based on Haskell.
Chisel [5] is an embedded language in Scala for hardware
generation. AutoPilot [54] is a commercial HLS tool that
generates hardware from C/C++/SystemC languages. De-
spite their success in raising the level of abstraction com-
pared to hardware description languages, programmers are
still required to write programs at a low-level and express
how computations are pipelined and parallelized. Our work
abstracts away the implementation details from program-
mers by using high-level parallel patterns, and applies com-
piler transformations to automatically pipeline and paral-
lelize operations and exploit on-chip memory for locality.

Existing hardware synthesis tools are limited in their
ability to automatically infer and generate coarse-grained
pipelines. A traditional software pipelining approach is typ-
ically used on innermost loop bodies consisting only of
primitive operations. Optimizations like unroll-and-jam, and
unroll-and-squash [35] also attempt to exploit pipelined par-
allelism, but target outer parallel loops with inner sequential
loops. To pipeline imperfectly nested loops, some commer-
cial high-level synthesis tools like Vivado [1] unroll all in-
ner loops and then employ traditional software pipelining.
Not only does this approach generate needlessly large de-
signs for large benchmarks, it also suffers from long com-
pilation times due to the complexity in scheduling a large
number of unrolled instructions. More recent works like
ElasticFlow [49] and CGPA [29] generate coarse-grained
pipelines using FIFOs in between stages for communica-
tion. However, they handle only a restricted form of data
access patterns and a restricted number of nesting levels.
Our metapipelining technique is more general than previ-
ous approaches because: (i) metapipeline stages are decou-
pled using double buffers, therefore not restricting data ac-
cess patterns, (ii) metapipelines are easily composed and
nested to any number of levels, and (iii) metapipelines can
handle dynamic rate mismatches as they use asynchronous
handshaking for inter-stage synchronization, thereby obviat-
ing the need to calculate static initiation interval as well as
knowing loop trip counts ahead of time.

Recent work has explored using polyhedral analysis with
HLS to optimize for data locality on FPGAs [39]. Using
polyhedral analysis, the compiler is able to promote mem-
ory references to on-chip memory and parallelize indepen-
dent loop iterations with more hardware units. However, the
compiler is not able to analyze loops that include non-affine

Parallel Pattern Definition High Level Language Example PPL Example
Multidimensional

Map(d)(m) : VD // Size s vector multiplied by 2
x.map{ e => 2*e } map(s){i => 2*x(i) }
// Addition of two size s vectors
x.zip(y){ (a,b) => a + b } map(s){i => x(i) + y(i) }

MultiFold(d)(r)(z)(f)(c) : VR // Reduction of vector of s elements
x.fold(1){ (a,b) => a * b } multiFold(s)(1)(1){ i =>

(0, acc => acc + x(i))
}{ (a,b) => a + b }

// Row summation in s x t matrix
x.map{ row => multiFold(s,t)(r)(zeros(s)){ (i,j) =>
row.fold(0){ (a,b) => a + b } (i, acc => acc + x(i,j))

} }{ (a,b) => map(s){ i => a(i) + b(i) } }

One-dimensional
FlatMap(d)(n) : V1 // Filter positives from s elements

x.flatMap{ e => flatMap(s){ i =>
if (e > 0) [e] else [] } if (x(i) > 0) [x(i)] else [] }

GroupByFold(d)(z)(g)(c) : (K,V)1 // Histogram with bin width 10
x.groupByFold(0){ e => groupByFold(s)(0){ i =>
(e/10, 1) (x(i)/10, acc => acc + 1)

}{ (a,b) => a + b } }{ (a,b) => a + b }

User-defined Values
d : IntegerD input domain m : IndexD => V value function

r : IntegerR output range n : Index => V1 multi-value function

z : VR init accumulator f : IndexD => (IndexR, VR => VR) (location, value) function

c : (VR,VR) => VR combine accumulator g : Index => (K, V => V)1 (key, value) function

Figure 2. Definitions and usage examples of supported parallel patterns.

accesses, limiting the coverage of applications that can be
generated for hardware. Our work can handle parallel pat-
terns with non-affine accesses by inferring required hard-
ware blocks (e.g., FIFOs and CAMs) for non-affine accesses,
while aggressively using on-chip memory for affine parts.

As high-level parallel patterns become increasingly pop-
ular to overcome the shortcomings of C based languages,
researchers have recently studied generating hardware from
functional parallel patterns. Lime [4] embeds high-level
computational patterns (e.g., map, reduce, split, and join)
in Java and automatically targets CPUs, GPUs, and FP-
GAs without modifying the code. Our compiler manages
a broader set of parallel patterns (e.g., groupBy) and ap-
plies transformations even when patterns are nested, which
is common in a large number of real-world applications.
Recent work has explored targeting nested parallel pat-
terns to FPGAs [20]. By exploiting the access patterns of
nested patterns to store sequential memory accesses to on-
chip memory and parallelizing the computation with strip-
mining, the compiler can generate hardware that efficiently
utilizes memory bandwidth. However, the compiler does not
automatically tile patterns for data locality or implement
metapipelines for nested parallel patterns, which we show
are essential components for generating efficient hardware.
Overall, our work is the first to show a complete method
for automatically tiling parallel patterns to improve local-
ity for individual compute units and a process for inferring
hardware metapipelines from nested parallel patterns.

3. Parallel Patterns
Parallel patterns are becoming a popular programming ab-
straction for writing high level applications that can still
be efficiently mapped to hardware targets such as multi-
core [32, 36, 46], clusters [18, 52, 26], GPUs [13, 28], and
FPGAs [4, 20]. In addition, they have been shown to pro-
vide high productivity when implementing applications in a
wide variety of domains [48, 42].We refer to the definitions
presented in Figure 2 as the parallel pattern language (PPL).
The definitions on the left represent the atoms in the interme-
diate language used in our compiler for analysis, optimiza-
tion, and code generation. The code snippets on the right
show common examples of how users typically interact with
these patterns in a functional programming language via col-
lections operations and how those examples are represented
in PPL. The syntactic structure is essentially the same ex-
cept that the input domain is inferred from the shape of the
input collection. Using explicit indices in the intermediate
language allows us to model more user-facing patterns and
more complicated input access patterns with fewer internal
primitives.

We separate our parallel patterns into two groups. Mul-
tidimensional patterns have an arbitrary arity domain and
range, but are restricted to a range which is a fixed func-
tion of the domain. One-dimensional patterns can have a dy-
namic output size. All patterns generate output values by ap-
plying a function to every index in the domain. Each pattern

1 //data to be clustered, size n x d

2 val points: Array[Array[Float]] = ...

3
4 // current centroids, size k x d

5 val centroids: Array[Array[Float]] = ...

6
7 // Assign each point to the closest centroid by grouping

8 val groupedPoints = points.groupBy { pt1 =>

9 // Assign current point to the closest centroid

10 val minDistWithIndex = centroids.map { pt2 =>

11 pt1.zip(pt2).map { case (a,b) => square(a - b) }.sum
12 }.zipWithIndex.minBy(p => p._1)

13 minDistWithIndex._2

14 }

15
16 // Average of points assigned to each centroid

17 val newCentroids = groupedPoints.map { case (k,v) =>

18 v.reduce { (a,b) =>

19 a.zip(b).map { case (x,y) => x + y }

20 }.map { e => e / v.length }

21 }.toArray

Figure 3. k-means clustering implemented using Scala col-
lections. In Scala, _1 and _2 refer to the first and second
value contained within a tuple.

then merges these values into the final output in a differ-
ent way. The output type V can be a scalar or structure of
scalars. We currently do not allow nested arrays, only multi-
dimensional arrays. We denote multidimensional array types
as VR, which denotes a tensor of element type V and arity
R. In Figure 2 subscript R always represents the arity of the
output range, and D the arity of the input domain.

Map generates a single element per index, aggregating
the results into a fixed-size output collection. Note that the
value function can close over an arbitrary number of input
collections, and therefore this pattern is general enough to
represent classic parallel operations like map, zip, and zip-
WithIndex.

MultiFold is a generalization of a fold which reduces gen-
erated values into a specified region of a (potentially) larger
accumulator using an associative combine function. The ini-
tial value z is required to be an identity element of this func-
tion, and must have the same size and shape as the final out-
put. The main function f generates an index specifying the
location within the accumulator at which to reduce the gen-
erated value. We currently require the generated values to
have the same arity as the full accumulator, but they may
be of any size up to the size of the accumulator. Note that a
traditional fold is the special case of MultiFold where every
generated value is the full size of the accumulator. f then
converts each index into a function that consumes the spec-
ified slice of the current accumulator and returns the new
slice. If the pattern’s implementation maintains multiple par-
tial accumulators in parallel, the combine function c reduces
them into the final result.

FlatMap is similar to Map except that it can generate an
arbitrary number of values per index. These values are then
all concatenated into a flattened output. The output size can

1 points: Array2D[Float](n,d) // data to be clustered

2 centroids: Array2D[Float](k,d) // current centroids

3
4 // Sum and number of points assigned to each centroid

5 (sums,counts) = multiFold(n)((k,d),k)(zeros((k,d),k)){ i =>

6 pt1 = points.slice(i, *)
7 // Assign current point to the closest centroid

8 minDistWithIndex = fold(k)((max, -1)){ j =>

9 pt2 = centroids.slice(j, *)

10 dist = fold(d)(0){ p =>

11 acc => acc + square(pt1(p) - pt2(p))

12 }{ (a,b) => a + b }

13 acc => if (acc._1 < dist) acc else (dist, j)

14 }{ (a,b) => if (a._1 < b._1) a else b }

15
16 minDistIndex = minDistWithIndex._2

17 sumFunc = ((minDistIndex, 0), acc => {

18 pt = points.slice(i, *)

19 map(d){ j => acc(j) + pt(j) }

20 })

21 countFunc = (minDistIndex, acc => acc + 1)

22
23 (sumFunc, countFunc)

24 }{ (a,b) => {

25 pt = map(k,d){ (i,j) => a._1(i,j) + b._1(i,j) }

26 count = map(k){ i => a._2(i) + b._2(i) }

27 (pt, count)

28 } }

29
30 // Average assigned points to compute new centroids

31 newCentroids = map(k,d){ (i,j) =>

32 sums(i,j) / counts(i)

33 }

Figure 4. k-means clustering represented using the parallel
patterns in Figure 2 after fusion and code motion.

only be determined dynamically and therefore we restrict the
operation to one-dimensional domains so that dynamically
growing the output is easily defined. Note that this primitive
also easily expresses a filter.

GroupByFold reduces generated values into one of many
buckets where the bucket is selected by generating a key
along with each value, i.e. it is a fused version of a groupBy
followed by a fold over each bucket. The operation is similar
to MultiFold except that the key-space cannot be determined
in advance and so the output size is unknown. Therefore we
also restrict this operation to one-dimensional domains.

Example Now that we have defined the operations, we will
use them to implement k-means clustering as an example ap-
plication. For reference, first consider k-means implemented
using the standard Scala collections operations, as shown in
Figure 3. We will use this application as a running exam-
ple throughout the remainder of this paper, as it exempli-
fies many of the advantages of using parallel patterns as an
abstraction for generating efficient hardware. k-means con-
sumes a set of n sample points of dimensionality d and at-
tempts to cluster those points by finding the k best cluster
centroids for the samples. This is achieved by iteratively re-
fining the centroid values. (We show only one iteration in
Figure 3 for simplicity.) First, every sample point is assigned

Pattern Strip Mined Pattern

T[Map(d)(m)] =
MultiFold(d/b)(d)(zeros(d)){ i =>
(i, acc => Map(b)(T[m]))

}(_)

T[MultiFold(d)(r)(z)(g)(c)] =
MultiFold(d/b)(r)(T[z]){ i =>
(i, acc => T[c](acc, MultiFold(b)(r)(T[z])(T[g])(T[c])))

}(T[c])

T[GroupByFold(d)(z)(h)(c)] =
GroupByFold(d/b)(T[z]){ i =>
GroupByFold(b)(T[z])(T[h])(T[c])

}(T[c])

T[FlatMap(d)(f)] = FlatMap(d/b){i => FlatMap(b)(T[f]) }

Table 1. Strip mining transformation rules for parallel patterns defined in Figure 2.

to the closest current centroid by computing the distance be-
tween every sample and every centroid. Then new centroid
values are computed by averaging all the samples assigned to
each centroid. This process repeats until the centroid values
stop changing. Previous work [43, 11, 14] has shown how
to stage a DSL application like k-means, lowering it into a
parallel pattern IR similar to ours, as well as how to perform
multiple high-level optimizations automatically on the IR.
One of the most important of these optimizations is fusing
patterns together, both vertically (to decrease the reuse dis-
tance between producer-consumer relationships) and hori-
zontally (to eliminate redundant traversals over the same do-
main). Figure 4 shows the structure of k-means after it has
been lowered into PPL and fusion rules have been applied.
We have also converted the nested arrays in the Scala exam-
ple to our multidimensional arrays. This translation requires
the insertion of slice operations in certain locations, which
produce a view of a subset of the underlying data. In our im-
plementation, we use the Delite compiler framework [46] to
stage applications. For the remainder of this paper, we will
assume a high-level translation layer from user code to PPL
exists and simply always start from the parallel pattern rep-
resentation.

4. Pattern Transformations
One of the key challenges of generating efficient custom ar-
chitectures from high level languages is in coping with ar-
bitrarily large data structures. Since main memory accesses
are expensive and area is limited, our goal is to store a work-
ing set in the FPGA’s local memory for as long as possible.
Ideally, we also want to hide memory transfer latencies by
overlapping communication with computation using hard-
ware blocks which automatically prefetch data. To this end,
in this section we describe a method for automatically tiling
parallel patterns to improve program locality and data reuse.
Like classic loop tiling, our pattern tiling method is com-
posed of two transformations: strip mining and interchange.
We assume here that our input is an intermediate representa-
tion of a program in terms of optimized parallel patterns and
that well known target-agnostic transformations like fusion,

code motion, struct unwrapping, and common subexpression
elimination (CSE) have already been run.

Strip mining The strip mining algorithm is defined here
using two passes over the IR. The first pass partitions each
pattern’s iteration domain d into tiles of size b by breaking
the pattern into a pair of perfectly nested patterns. The outer
pattern operates over the strided index domain, expressed
here as d/b, while the inner pattern operates on a tile of
size b. For the sake of brevity this notation ignores the case
where b does not perfectly divide d. This case is trivially
solved with the addition of min checks on the domain of the
inner loop. Table 1 gives an overview of the rules used by
transformer (denoted T) to strip mine parallel patterns. In
addition to splitting up the domain, patterns are transformed
by recursively strip mining all functions within that pattern.
Map is strip mined by reducing its domain and range and
nesting it within a MultiFold. Note that the strided MultiFold
writes to each memory location only once. In this case we
indicate the MultiFold’s combination function as unused
with an underscore. As defined in Figure 2, the MultiFold,
GroupByFold, and FlatMap patterns have the property that a
perfectly nested form of a single instance of one of these
patterns is equivalent to a single “flattened” form of that
same pattern. This property allows these patterns to be strip
mined by breaking them up into a set of perfectly nested
patterns of the same type as the original pattern.

The second strip mining pass converts array slices and ac-
cesses with statically predictable access patterns into slices
and accesses of larger, explicitly defined array memory tiles.
We define tiles which have a size statically known to fit on
the FPGA using array copies. Copies generated during strip
mining can then be used to infer buffers during hardware
generation. Array tiles which have overlap, such as those
generated from sliding windows in convolution, are marked
with metadata in the IR as having some reuse factor. Array
copies with reuse have special generation rules to minimize
the number of redundant reads to main memory when possi-
ble.

Table 2 demonstrates how our rules can be used to strip
mine a set of simple data parallel operations. We use the copy
infix function on arrays to designate array copies in these

High Level Language PPL Strip Mined PPL

// Element-wise Map
val x: Array[Float] // length d
x.map{e => 2*e}

map(d){i => 2*x(i)}

multiFold(d/b)(d)(zeros(d)){ii =>
xTile = x.copy(b + ii)
(i, map(b)(b){i => 2*xTile(i) })

}(_)

// Sums along matrix rows
val x: Array[Array[Float]] // m x n
x.map{ row =>
row.fold(0){ (a,b) => a + b }

}

multiFold(m,n)(m)(zeros(m)){ (i,j) =>
(i, acc => acc + x(i,j))

}{(a,b) =>
map(n){(j) => a(j) + b(j)}

}

multiFold(m/b0,n/b1)(m)(zeros(m)){ (ii,jj) =>
xTile = x.copy(b0 + ii, b1 + jj)
tile = multiFold(b0,b1)(b0)(zeros(b0)){ (i,j) =>
(i, acc => acc + xTile(i,j))

}{(a,b) => map(b0){i => a(i) + b(i)} }
(ii, acc => map(b0){j => acc(j) + tile(j)})

}{(a,b) =>
multiFold(m/b0)(m)(zeros(m)){ii =>
aTile = a.copy(b0 + ii)
bTile = a.copy(b0 + ii)
(ii, acc => map(b0){i => aTile(i) + bTile(i)})

}{(a,b) => map(m){i => a(i) + b(i)}}
}

// Simple Filter
val x: Array[Float] // length d
x.flatMap{ e =>
if (e > 0) e else []

}

flatMap(d){i =>
if (x(i) > 0) x(i) else []

}

flatMap(d/b)(1){ii =>
eTile = x.copy(b + ii)
flatMap(b){i =>
if (eTile(i) > 0) eTile(i) else []

}}

// Histogram Calculation
val x: Array[Float] // length d
x.groupByFold(0){ r =>
(r/10, 1)

}{ (a,b) => a + b }

groupByFold(d)(0){i =>
(x(i)/10, 1)

}{(a,b) => a + b }

groupByFold(d/b)(0){ii =>
xTile = x.copy(b + ii)
groupByFold(b)(0){i =>
(xTile(i)/10, 1)

}{(a,b) => a + b}
}{(a,b) => a + b}

Table 2. Examples of the parallel pattern strip mining transformation on Map, MultiFold, FlatMap, and GroupByFold

High Level Language Strip Mined PPL Interchanged PPL

// Matrix Multiplication
x: Array[Array[Float]] // m x p
y: Array[Array[Float]] // p x n
z = x.map{row =>
y.map{col =>
row.zipWith(col){(a,b) =>
a * b

}.sum
}

}

multiFold(m/b0,n/b1)(m,n)(zeros(m,n)){(ii,jj) =>
((ii,jj), zTile =>
map(b0,b1){(i,j) =>
tile = multiFold(p/b2)(1)(0){ kk =>
xTile = x.copy(b0 + ii, b2 + kk)
yTile = y.copy(b2 + kk, b1 + jj)
dprod = fold(b2)(0){ k =>
acc => acc + xTile(i,k) * yTile(k,j)

}{(a,b) => a + b})
(0, elemTile => elemTile + dprod)

}{(a,b) => a + b}
zTile(i,j) + tile

})
}(_)

multiFold(m/b0,n/b1)(m,n)(zeros(m,n)){(ii,jj) =>
tile = multiFold(p/b2)(b0,b1)(...){kk =>
xTile = x.copy(b0 + ii, b2 + kk)
yTile = y.copy(b2 + kk, b1 + jj)
(0, elemTile =>
map(b0,b1){(i,j) =>
dprod = fold(b2)(0){ k =>
acc => acc + xTile(i,j) * yTile(j,k)

}{(a,b) => a + b}
elemTile(i,j) + dprod

})
}{(a,b) =>
map(b0,b1){(i,j) => a(i,j) + b(i,j)

}
((ii,jj), zTile =>
map(b0,b1){(i,j) => zTile(i,j) + tile(i,j)}

})
}(_)

Table 3. Example of the pattern interchange transformation applied to matrix multiplication.

examples, using similar syntax as array slice. We assume in
these examples that CSE and code motion transformation
passes have been run after strip mining to eliminate duplicate
copies and to move array tiles out of the innermost patterns.
In these examples, strip mining creates tiled copies of input
collections that we can later directly use to infer read buffers.

Pattern interchange Given an intermediate representation
with strip mined nested parallel patterns, we now need to
interchange patterns to increase the reuse of newly created
data tiles. This can be achieved by moving strided patterns
out of unstrided patterns. However, as with imperative loops,
it is not sound to arbitrarily change the order of nested
parallel patterns. We use two rules for pattern interchange
adapted from a previously established Collect-Reduce re-
ordering rule for computation on clusters [11]. These rules
both match on the special case of MultiFold where every iter-

ation updates the entire accumulator, which we refer to here
as a fold. The first interchange rule defines how to move a
scalar, strided fold out of an unstrided Map, transforming the
nested loop into a strided fold of a Map. Note that this also
changes the combination function of the fold into a Map. The
second rule is the inverse of the first, allowing us to reorder
a strided MultiFold with no reduction function (i.e. the outer
pattern of a tiled Map) out of an unstrided fold. This creates
a strided MultiFold of a scalar fold. We apply these two rules
whenever possible to increase the reuse of tiled inputs.

Imperfectly nested parallel patterns commonly occur ei-
ther due to the way the original user program was structured
or as a result of aggressive vertical fusion run prior to tiling.
Interchange on imperfectly nested patterns requires splitting
patterns into perfectly nested sections. However, splitting
and reordering trades temporal locality of intermediate val-

ues for increased reuse of data tiles. In hardware, this can
involve creating more main memory reads or larger on-chip
buffers for intermediate results so that less reads need to be
done for input and output data. This tradeoff between mem-
ory reads and increased buffer usage requires more com-
plex cost modeling. We use a simple heuristic to determine
whether to split fused loops: we split and interchange pat-
terns only when the intermediate result created after splitting
and interchanging is statically known to fit on the FPGA.
This handles the simple case where the FPGA has unused
on-chip buffers and allocating more on-chip memory guar-
antees a decrease in the number of main memory reads. Fu-
ture work will examine ways to statically model the tradeoff
between main memory accesses and local buffers near 100%
on-chip memory utilization.

Table 3 shows a simple example of the application of our
pattern interchange rules on matrix multiplication. We as-
sume here that code motion has been run again after pattern
interchange has completed. In matrix multiplication, we in-
terchange the perfectly nested strided MultiFold and the un-
strided Map. This ordering increases the reuse of the copied
tile of matrix y and changes the scalar reduction into a tile-
wise reduction. Note that the partial result calculation and
the inner reduction can now be vertically fused.

Discussion The rules we outline here for automatic tiling
of parallel patterns are target-agnostic. However, tile copies
should only be made explicit for devices with scratchpad
memory. Architectures with hierarchical memory systems
effectively maintain views of subsections of memory auto-
matically through caching, making explicit copies on these
architectures a waste of both compute cycles and memory.

We currently require the user to explicitly specify tile
sizes for all dimensions which require tiling. In future work,
tile sizes for all pattern dimensions will instead be deter-
mined by the compiler through automated tile size selection
using modeling and design space exploration.

Example We conclude this section with a complete exam-
ple of tiling the k-means clustering algorithm, starting from
the fused representation shown in Figure 4. We assume here
that we wish to tile the number of input points, n, with tile
size b0 and the number of clusters, k, with tile size b1 but
not the number of dimensions, d. This is representative of
machine learning classification problems where the number
of input points and number of labels is large, but the number
of features for each point is relatively small.

Figure 5 gives a comparison of the k-means clustering
algorithm after strip mining and after pattern interchange.
During strip mining, we create tiles for both the points and
centroids arrays, which helps us to take advantage of main
memory burst reads. However, in the strip mined version,
we still fully calculate the closest centroid for each point.
This requires the entirety of centroids to be read for each
point. We increase the reuse of each tile of centroids by
first splitting the calculation of the closest centroid label

from the MultiFold (Figure 5a. line 5). The iteration over
the centroids tile is then perfectly nested within the iteration
over the points. Interchanging these two iterations allows
us to reuse the centroids tile across points, thus decreasing
the total number of main memory reads for this array by a
factor of b0. This decrease comes at the expense of changing
the intermediate (distance, label) pair for a single point to a
set of intermediate pairs for an entire tile of points. Since
the created intermediate result has size 2b0, we statically
determine that this is an advantageous tradeoff and use the
split and interchanged form of the algorithm.

5. Hardware Generation
In this section, we describe how the tiled intermediate rep-
resentation is translated into an efficient FPGA design. FP-
GAs are composed of various logic, register, and memory
resources. These resources are typically configured for a spe-
cific hardware design using a hardware description language
(HDL) that is translated into an FPGA configuration file.
Our approach to FPGA hardware generation translates our
parallel pattern IR into MaxJ, a Java-based hardware gener-
ation language (HGL), which is in turn used to generate an
HDL. This is simpler than generating HDL directly because
MaxJ performs tasks such as automatic pipelining of inner-
most loops and other low-level hardware optimizations.

Hardware generation follows a template-based approach.
We analyze the structure of the parallel patterns in the IR
to determine the correct template to translate the pattern to
hardware. Table 4 lists the templates and their corresponding
IR constructs in three classes: memories, pipelined execution
units, and state machine controllers. Buffer, Double buffer,
and Cache are different on-chip memory templates intended
to capture both regular and data-dependent access patterns.
In particular, the double buffer template is used to decou-
ple execution stages and support dynamic rate mismatch be-
tween producer and consumer stages. Templates labeled as
Pipelined Execution Units are used to support different kinds
of innermost parallel patterns, as described in Table 4. The
Controller templates implement a specific form of control
flow using asynchronous handshaking signals. The Sequen-
tial, Parallel, and Metapipeline controllers all orchestrate ex-
ecution of a list of templates; Sequential enforces linear exe-
cution order, Parallel enforces parallel execution with a bar-
rier at the end, and MetaPipeline enforces pipelined execu-
tion. Tile Memory controllers correspond to off-chip memory
channels that load tiles of data into one of the on-chip mem-
ory templates. Each template can be composed with other
templates. For example, a Metapipeline controller could be
composed of multiple Parallel controllers, each of which
could contain pipelined Vector or Tree reduction units. We
next describe the key features in the IR which we use to in-
fer each of these template classes.

Memory Allocation Generating efficient FPGA hardware
requires effective usage of on-chip memories (buffers). Prior

1 (sums,counts) = multiFold(n/b0)((k,d),k)(...){ii =>

2 pt1Tile = points.copy(b0 + ii, *)

3 multiFold(b0)((k,d),k)(zeros(1,d),0){ i =>

4 pt1 = pt1Tile.slice(i, *)

5 minDistWithIndex = multiFold(k/b1)(1)((max, -1)){ jj =>

6 pt2Tile = centroids.copy(b1 + jj, *)
7 minIndTile = fold(b1)((max,-1)){ j =>

8 pt2 = pt2Tile.slice(j, *)

9 dist = distance(pt1, pt2)

10 acc => if (acc._1 < dist) acc else (dist, j+jj)

11 }{ (a,b) => if (a._1 < b._1) a else b }

12
13 (0, acc =>

14 if (acc._1 < minIndTile._1) acc else minIndTile)

15 }{(a,b) =>

16 if (a._1 < b._1) a else b

17 }

18
19
20 minDistIndex = minDistWithIndex._2

21 sumFunc = ... // Fig 4: lines 17-20

22 countFunc = ... // Fig 4: line 21

23 (sumFunc, countFunc)

24 }{(a,b) => ... /* Tiled combination function */ }

25 (0, acc => ... /* Tiled combination function */)

26 }{(a,b) => ... /* Tiled combination function */ }

27
28 newCentroids = multiFold(k/b1,d)(k,d)(...){ (ii,jj) =>

29 sumsBlk = sums.copy(b1 + ii, *)

30 countsBlk = counts.copy(b1 + ii)

31 (ii, acc => map(k,d){ (i,j) =>

32 sumsBlk(i,j) / countsBlk(i)

33 })

34 }

1 (sums,counts) = multiFold(n/b0)((k,d),k)(...){ ii =>

2 pt1Tile = points.copy(b0 + ii, *)

3 minDistWithInds = multiFold(k/b1)(b1)(map(b1)((max, -1))){ jj =>

4 pt2Tile = centroids.copy(b1 + jj, *)

5 minIndsTile = map(b0){ i =>

6 pt1 = pt1Tile.slice(i, *)
7 minIndTile = fold(b1)((max,-1)){ j =>

8 pt2 = pt2Tile.slice(j, *)

9 dist = distance(pt1, pt2)

10 acc => if (acc._1 < dist) acc else (dist, j+jj)

11 }{ (a,b) => if (a._1 < b._1) a else b }

12 }

13 (0, acc => map(b0){ i =>

14 if (acc(i)._1 < minIndsTile(i)._1) acc else minIndsTile(i) })

15 }{(a,b) =>

16 map(b0){i => if (a(i)._1 < b(i)._1) a(i) else b(i) }

17 }

18 multiFold(b0)(k,d)(zeros(k,d)){ i =>

19 pt1 = pt1Tile.slice(i, *)

20 minDistIndex = minDistWithInds(i)._2

21 sumFunc = ... // Fig 4: lines 17-20

22 countFunc = ... // Fig 4: line 21

23 (sumFunc, countFunc)

24 }{(a,b) => ... /* Tiled combination function */ }

25 (0, acc => ... /* Tiled combination function */)

26 }{(a,b) => ... /* Tiled combination function */ }

27
28 newCentroids = multiFold(k/b1,d)(k,d)(...){ (ii,jj) =>

29 sumsBlk = sums.copy(b1 + ii, *)

30 countsBlk = counts.copy(b1 + ii)

31 (ii, acc => map(k,d){ (i,j) =>

32 sumsBlk(i,j) / countsBlk(i)

33 })

34 }

(a) Strip mined k-means in PPL. (b) Pattern Interchanged k-means in PPL.

1 For each tile of b0 points:
2 Copy the points tile into local memory
3 - 4 For each point pt1 in the points tile:
5 For each tile of b1 centroids:
6 Copy the centroids tile into local memory
7 - 8 For each centroid pt2 in the centroids tile:
9 Compute distance between pt1 and pt2
10-11 Keep the closest (index,distance) pair

End
13-16 Keep the closest pair across tiles

End
20 Extract the index of the closest centroid
21 Add pt1 to row minDistIndex
22 Increment count at minDistIndex
24 Add point and count sums across tiles

End
25-26 Add point and count sums across tiles

End

28 For each tile of b1 point sums and counts:
29 Copy the point sums tile into local memory
30 Copy the point counts tile into local memory
31-32 Compute each new centroid as sums(i) / count(i)

End

1 For each tile of b0 points:
2 Copy the points tile into local memory
3 For each tile of b1 centroids:
4 Copy the centroids tile into local memory
5 - 6 For each point pt1 in the points tile:
7 - 8 For each centroid pt2 in the centroids tile:
9 Compute distance between pt1 and pt2
10-11 Keep the closest (index,distance) pair

End
End

13-16 For each point: keep the closest pair across tiles
End

18-19 For each point pt1 in points tile:
20 Extract the index of the closest centroid
21 Add pt1 to row minDistIndex
22 Increment count at minDistIndex
24 Add point and count sums across tiles

End
25-26 Add point and count sums across tiles

End

28 For each tile of b1 point sums and counts:
29 Copy the point sums tile into local memory
30 Copy the point counts tile into local memory
31-32 Compute each new centroid as sum / count

End

(c) Pseudocode description of strip mined k-means. (d) Pseudocode description of pattern interchanged k-means.

Fused Strip Mined Interchanged
Main Memory Reads On-Chip Storage Main Memory Reads On-Chip Storage Main Memory Reads On-Chip Storage

points n× d d n× d b0 × d n× d b0 × d
centroids n× k × d d n× k × d b1 × d (n/b0)× k × d b1 × d
minDistWithIndex 0 2 0 2 0 2× b0

(e) Minimum number of words read from main memory and on-chip storage for data structures within k-means clustering after each IR
transformation.

Figure 5. Full tiling example for k-means clustering, starting from the fused representation in Figure 4, using tile sizes of b0

and b1 for the number of points n and the number of clusters k. The number of features d is not tiled in this example.

Template Description IR Construct

Memories
Buffer On-chip scratchpad memory Statically sized array
Double buffer Buffer coupling two stages in a metapipeline Same as metapipeline controller
Cache Tagged memory to exploit locality in random memory access patterns Non-affine accesses

Pipelined
Execution

Units

Vector SIMD parallelism Map over scalars
Reduction tree Parallel reduction of associative operations MultiFold over scalars
Parallel FIFO Used to buffer ordered outputs of dynamic size FlatMap over scalars
CAM Fully associative key-value store GroupByFold over scalars

Controllers

Sequential Controller which coordinates sequential execution Sequential IR node

Parallel
Task parallel controller. Simultaneously starts all member modules
when enabled, signals done when all members finish Independent IR nodes

Metapipeline
Controller which coordinates execution of nested parallel patterns in a
pipelined fashion

Outer parallel pattern with multi-
ple inner patterns

Tile memory
Memory command generator to fetch tiles of data from off-chip mem-
ory Transformer-inserted array copy

Table 4. Hardware templates used in hardware code generation.

to generating MaxJ, we run an analysis pass to allocate
buffers for arrays based on data access patterns and size. All
arrays with statically known sizes, such as array copies gen-
erated in the tiling transformation described in Section 4,
are assigned to buffers. Dynamically sized arrays are kept in
main memory and we generate caches for any non-affine ac-
cesses to these arrays. We also track each memory’s readers
and writers and use this information to instantiate a template
with the appropriate word width and number of ports.

Pipeline Execution Units We generate parallelized and
pipelined hardware when parallel patterns compute with
scalar values, as occurs for the innermost patterns. We im-
plemented templates for each pipelined execution unit in Ta-
ble 4 using MaxJ language constructs, and instantiate each
template with the proper parameters (e.g., data type, vector
length) associated with the parallel pattern. The MaxJ com-
piler applies low-level hardware optimizations such as vec-
torization, code scheduling, and fine-grained pipelining, and
generates efficient hardware. For example, we instantiate a
reduction tree for a MultiFold over an array of scalar values,
which is automatically pipelined by the MaxJ compiler.

Metapipelining To generate high performance hardware
from parallel patterns, it is insufficient to exploit only a sin-
gle level of parallelism. However, exploiting nested paral-
lelism requires mechanisms to orchestrate the flow of data
through multiple pipeline stages while also exploiting par-
allelism at each stage of execution, creating a hierarchy
of pipelines, or metapipeline. This is in contrast to tradi-
tional HLS tools which require inner patterns to have a static
size and be completely unrolled in order to generate a flat
pipeline containing both the inner and outer patterns.

We create metapipeline schedules by first performing a
topological sort on the IR of the body of the current paral-
lel pattern. The result is a list of stages, where each stage
contains a list of patterns which can be run concurrently.
Exploiting the pattern’s semantic information, we then op-
timize the metapipeline schedule by removing unnecessary
memory transfers and redundant computations. For instance,

if the output memory region of the pattern has been assigned
to a buffer, we do not generate unnecessary writes to main
memory.

As another example, our functional representation of tiled
parallel patterns can sometimes create redundant accumula-
tion functions, e.g., in cases where a MultiFold is tiled into a
nested MultiFold. During scheduling we identify this redun-
dancy and emit a single copy of the accumulator, removing
the unnecessary intermediate buffer. Finally, in cases where
the accumulator of a MultiFold cannot completely fit on-
chip, we add a special forwarding path between the stages
containing the accumulator. This optimization avoids redun-
dant writes to memory and reuses the current tile. Once we
have a final schedule for the metapipeline, we promote every
output buffer in each stage to a double buffer to avoid write
after read (WAR) hazards between metapipeline stages.

Example Figure 6 shows a block diagram of the hard-
ware generated for the k-means application. For simplicity,
this diagram shows the case where the centroids array com-
pletely fits on-chip, meaning we do not tile either the number
of clusters k or the number of features d. The generated hard-
ware contains three sequential steps. The first step (Pipe 0)
preloads the entire centroids array into a buffer. The second
step (Metapipeline A) is a metapipeline which consists of
three stages with double buffers to manage communication
between the stages. These three stages directly correspond
to the three main sections of the MultiFold (Figure 4, line 5)
used to sum and count the input points as grouped by their
closest centroid. The first stage (Pipe 1) loads a tile of the
points array onto the FPGA. Note that this stage is double
buffered to enable hardware prefetching. The second stage
(Pipe 2) computes the index of the closest centroid using
vector compute blocks and a scalar reduction tree. The third
stage (Pipe 3 and Pipe 4) increments the count for this min-
imum index and adds the current point to the corresponding
location in the buffer allocated for the new centroids. The
third step (Metapipeline B) corresponds with the second out-
ermost parallel pattern in the k-means application. This step

Vector
Dist

(Norm)
Vector

Dist
(Norm)

+
+

/
/

Vector
Dist

(Norm)

points
Tile

Load

Pipe 1

Inc

/

new
centroids

Tile
Store

Pipe 6

centroids
Buffer

points
Double buffer

points
Double buffer new centroids

Double buffer

Pipe 2 — MinDistWithIndex Calculation

+

Pipe 3 — Sum

Pipe 5 — Avg.

Metapipeline A (Pipe 1–4) — assign points to clusters and sum points
Metapipeline B (Pipe 5–6) —

average points

centroids
Tile

Load

Pipe 0

Scalar
Dist

(Tree +)

(Min
Dist, Idx)

Pipe 4 — Count

sum
Buffer

count
Buffer

minIdx
Double buffer

Figure 6. Hardware generated for the k-means application.

streams through the point sums and the centroid counts, di-
viding each sum by its corresponding count. The resulting
new centroids are then written back to main memory using a
tile store unit for further use on the CPU.

Our automatically generated hardware design for the core
computation of k-means is very similar to the manually op-
timized design described by Hussain et al. [27]. While the
manual implementation assumes a fixed number of clusters
and a small input dataset which can be preloaded onto the
FPGA, we use tiling to automatically generate buffers and
tile load units to handle arbitrarily sized data. Like the man-
ual implementation, we automatically parallelize across cen-
troids and vectorize the point distance calculations. As we
see from the k-means example, our approach enables us to
automatically generate high quality hardware implementa-
tions which are comparable to manual designs.

6. Evaluation
We evaluate our approach to hardware generation described
in Sections 4 and 5 by comparing the performance and
area utilization of the FPGA implementations of a set of
data analytic benchmarks. We focus our investigation on the
relative improvements that tiling and metapipelining provide
over hardware designs that do not have these features.

6.1 Methodology
The benchmarks used in our evaluation are summarized in
Table 5. We choose to study vector outer product, matrix
row summation, and matrix multiplication as these exem-
plify many commonly occurring access patterns in the ma-
chine learning domain. TPC-H Query 6 is a data querying
application which reads a table of purchase records, filtering
all records which match a given predicate. It then computes
the sum of a product of two columns in the filtered records.
Logistic regression is a binary discriminative classification
algorithm that uses the sigmoid function in the calculation of
predictions. Gaussian discriminant analysis (GDA) is a clas-
sification algorithm which models the distribution of each

Benchmark Description Collections Ops

outerprod Vector outer product map

sumrows Summation through matrix rows map, reduce

gemm Matrix multiplication map, reduce

tpchq6 TPC-H Query 6 filter, reduce

logreg Logistic regression map, reduce

gda Gaussian discriminant analysis map, filter, reduce

blackscholes Black-Scholes option pricing map

kmeans k-means clustering map, groupBy, reduce

Table 5. Evaluation benchmarks with major collections op-
erations used by Scala implementation.

class as a multivariate Gaussian. Black-Scholes is a financial
analytics application for option pricing. k-means clustering
groups a set of input points by iteratively calculating the k
best cluster centroids. In our implementations, all of these
benchmarks operate on single precision, floating point data.

We implement our transformation and hardware gen-
eration steps in an existing compiler framework called
Delite [46]. We write each of our benchmark applications in
OptiML [47], a high level, domain specific language embed-
ded in Scala for machine learning. We then compile each of
these applications with the modified Delite compiler. Dur-
ing compilation, applications are staged, translating them
into PPL representations. The compiler then performs the
tiling transformations and hardware optimizations described
in Sections 4 and 5 before generating MaxJ hardware de-
signs. We then use the Maxeler MaxCompiler toolchain to
generate an FPGA configuration bitstream from our gen-
erated MaxJ. We use the Maxeler runtime layer to manage
communication with the FPGA from the host CPU. We mea-
sure the running times of these designs starting after input
data has been copied to the FPGA’s DRAM and ending when
the hardware design reports completion. Final running times
were calculated as an arithmetic mean of five individual run

1.1	
6.5	

4.1	
1.6	

13.4	
15.5	

1.8	 1.7	1.1	

11.5	
6.3	

2.0	

39.4	

19.7	

2.4	 3.5	

0	
5	
10	
15	
20	
25	
30	
35	
40	
45	

outerprod	 sumrows	 gemm	 tpchq6	 gda	 kmeans	 logreg	 blackscholes	

sp
ee
du

p	

0.7	

0.8	

0.9	

1	

1.1	

1.2	

1.3	

1.4	

logic	 FF	 mem	 logic	 FF	 mem	 logic	 FF	 mem	 logic	 FF	 mem	 logic	 FF	 mem	 logic	 FF	 mem	 logic	 FF	 mem	 logic	 FF	 mem	

outerprod	 sumrows	 matmult	 tpchq6	 gda	 kmeans	 logreg	 blackscholes	

re
so
ur
ce
	u
se
	

+tiling +tiling+metapipelining

Figure 7. Speedups and resource usages, relative to respective baseline designs, resulting from tiling and metapipelining.

times to account for small runtime variations in main mem-
ory accesses and Maxeler’s device driver stack.

We run each generated design on an Altera Stratix V
FPGA on a Max4 Maia board. The Maia board contains
48 GB of DDR3 DRAM with a maximum bandwidth of
76.8 GB/s. The area numbers given in this section are ob-
tained from synthesis reports provided by Altera’s logic syn-
thesis toolchain. Area utilization is reported under three cat-
egories: Logic utilization (denoted “logic”), flip flop usage
(“FF”), and on-chip memory usage (“mem”).

6.2 Experiments
The baseline for each benchmark is an optimized hardware
design implemented using MaxJ. The baseline designs were
manually tuned after automatic generation and are represen-
tative of optimizations done by state-of-the-art high-level
synthesis tools. In particular, each baseline design exploits
data and pipelined parallelism within patterns where possi-
ble. Pipelined parallelism is exploited for patterns that op-
erate on scalars. Our baseline design exploits locality at the
level of a single DRAM burst, which on the MAX4 MAIA
board is 384 bytes. To isolate the effects of the amount of
parallelism in our comparison, we keep the innermost pat-
tern parallelism factor constant between the baseline design
and our optimized versions for each benchmark.

We evaluate our approach against the baseline by generat-
ing two hardware configurations per benchmark: a configu-
ration with tiling but no metapipelining, and a configuration
with both tiling and metapipelining optimizations enabled.

Impact of tiling alone Figure 7 shows the obtained speedups
as well as relative on-chip resource utilizations for each
of benchmarks. As can be seen, most benchmarks in our
suite show significant speedup when tiling transformations
are enabled. Benchmarks like sumrows and gemm benefit

from inherent locality in their memory accesses. For gemm,
our automatically generated code achieves a speedup of 4×
speedup over the baseline for a marginal increase of about
10% on-chip memory usage.

Benchmarks outerprod and tpchq6 do not show a sig-
nificant difference with our tiling transformations over the
baseline. This is because both outerprod and tpchq6 are both
memory-bound benchmarks. Tpchq6 streams through the in-
put once without reuse, and streaming data input is already
exploited in our baseline design. Blackscholes has a simi-
lar data access pattern as tpchq6, due to which it achieves
a speedup similar to that of tpchq6. Hence tiling does not
provide any additional benefit. Most of the locality in logreg
is already captured at burst-level granularity by our base-
line. As a result, logreg achieves a modest speedup of 1.8x
over the baseline due to tiling. The core compute pipeline
in outerprod is memory-bound at the stage writing results
to DRAM, which cannot be addressed using tiling. Despite
the futility of tiling in terms of performance, tiling outer-
prod has a noticeable increase in memory utilization as the
intermediate result varies as the square of the tile size.

In kmeans and gda, some of the input data structures are
small enough that they can be held in on-chip memory. This
completely eliminates accesses to off-chip memory, leading
to dramatic speedups of 13.4× and 15.5× respectively with
our tiling transformations. gda uses more on-chip memory
to store intermediate data. On the other hand, the tiled ver-
sion kmeans utilizes less on-chip memory resources. This is
because the baseline for kmeans instantiates multiple load
and store units, each of which creates several control struc-
tures in order to read and write data from DRAM. Each of
these control structures includes address and data streams,
which require several on-chip buffers. By tiling, we require
a smaller number of load and store units.

Impact of metapipelining The second speedup bar in Fig-
ure 7 shows the benefits of metapipelining. Metapipelines in-
crease throughput at the expense of additional on-chip mem-
ory used for double buffers. Metapipelining overlaps design
compute with data transfer and helps to hide the cost of the
slower stage. Benchmarks like gemm and sumrows naturally
benefit from metapipelining because the memory transfer
time is completely overlapped with the compute, resulting
in speedups of 6.3× and 11.5× respectively. Metapipelining
also exploits overlap in streaming benchmarks like tpchq6
and blackscholes, where the input data is fetched and stored
simultaneously with the core computation.

The speedup due to metapipelining is largely determined
by balancing between stages. Stages with roughly equal
number of cycles benefit the most, as this achieves the most
overlap. Unbalanced stages are limited by the slowest stage,
thus limiting performance. We observe this behavior in out-
erprod, where the metapipeline is bottlenecked by the stage
writing results back to DRAM. The metapipeline in logreg
is bottlenecked at the stage performing dot products of all
the points in the input tile with the theta vector. As we only
parallelize the innermost parallel pattern in this work, only a
single dot product is produced at a time, even though the dot
product itself is executed in parallel across the point dimen-
sions. On the other hand, applications like gda, kmeans and
sumrows greatly benefit from metapipelining. In particular,
gda naturally maps to nested metapipelines that are well-
balanced. The stage loading the input tile overlaps execution
with the stage computing the output tile and the stage storing
the output tile. The stage computing the output tile is also
a metapipeline where the stages perform vector subtraction,
vector outer product and accumulation. We parallelize the
vector outer product stage as it is the most compute-heavy
part of the algorithm; parallelizing the vector outer product
enables the metapipeline to achieve greater throughput. This
yields an overall speedup of 39.4× over the baseline.

7. Conclusion
In this paper, we introduced a set of compilation steps nec-
essary to produce an efficient FPGA hardware design from
an intermediate representation composed of nested paral-
lel patterns. We described a set of simple transformation
rules which can be used to automatically tile parallel pat-
terns which exploit semantic information inherent within
these patterns and which place fewer restrictions on the pro-
gram’s memory accesses than previous work. We then pre-
sented a set of analysis and generation steps which can be
used to automatically infer optimized hardware designs with
metapipelining. Finally, we presented experimental results
for a set of benchmarks in the machine learning and data
querying domains which show that these compilation steps
provide performance improvements of up to 39.4× with a
minimal impact on FPGA resource usage.

Acknowledgments
The authors thank Maxeler Technologies for their assis-
tance with this paper and Jacob Bower for his help running
experiments. They also thank the reviewers for their com-
ments and suggestions. This work is supported by DARPA
Contract-Air Force FA8750-12-2-0335; Army Contract AH-
PCRC W911NF-07-2-0027-1; NSF Grants IIS-1247701,
CCF-1111943, CCF-1337375, and SHF-1408911; Stanford
PPL affiliates program, Pervasive Parallelism Lab: Oracle,
AMD, Huawei, Intel, NVIDIA, SAP Labs. Authors ac-
knowledge additional support from Oracle. The views and
conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the of-
ficial policies or endorsements, either expressed or implied,
of DARPA or the U.S. Government.

References
[1] Vivado high-level synthesis. http://www.xilinx.

com/products/design-tools/vivado/integration/
esl-design.html, 2016.

[2] Sadaf R Alam, Pratul K Agarwal, Melissa C Smith, Jeffrey S
Vetter, and David Caliga. Using fpga devices to accelerate
biomolecular simulations. Computer, (3):66–73, 2007.

[3] Arvind. Bluespec: A language for hardware design, simula-
tion, synthesis and verification invited talk. In Proceedings
of the First ACM and IEEE International Conference on For-
mal Methods and Models for Co-Design, MEMOCODE ’03,
pages 249–, Washington, DC, USA, 2003. IEEE Computer
Society.

[4] Joshua Auerbach, David F. Bacon, Perry Cheng, and Rodric
Rabbah. Lime: A java-compatible and synthesizable lan-
guage for heterogeneous architectures. In Proceedings of the
ACM International Conference on Object Oriented Program-
ming Systems Languages and Applications, OOPSLA ’10,
pages 89–108, New York, NY, USA, 2010. ACM.

[5] J. Bachrach, Huy Vo, B. Richards, Yunsup Lee, A. Waterman,
R. Avizienis, J. Wawrzynek, and K. Asanovic. Chisel: Con-
structing hardware in a scala embedded language. In Design
Automation Conference (DAC), 2012 49th ACM/EDAC/IEEE,
pages 1212–1221, June 2012.

[6] David Bacon, Rodric Rabbah, and Sunil Shukla. Fpga pro-
gramming for the masses. Queue, 11(2):40:40–40:52, Febru-
ary 2013.

[7] Donald G Bailey. Design for embedded image processing on
FPGAs. John Wiley & Sons, 2011.

[8] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Al-
bert Cohen, and Cédric Bastoul. The polyhedral model is
more widely applicable than you think. In ETAPS Inter-
national Conference on Compiler Construction (CC’2010),
pages 283–303, Paphos, Cyprus, March 2010. Springer Ver-
lag.

[9] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sa-
dayappan. A practical automatic polyhedral parallelizer and
locality optimizer. In Proceedings of the 29th ACM SIGPLAN

Conference on Programming Language Design and Imple-
mentation, PLDI ’08, pages 101–113, New York, NY, USA,
2008. ACM.

[10] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sa-
dayappan. A practical automatic polyhedral program opti-
mization system. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), June
2008.

[11] Kevin J. Brown, HyoukJoong Lee, Tiark Rompf, Arvind K.
Sujeeth, Christopher De Sa, Christopher Aberger, and Kunle
Olukotun. Have abstraction and eat performance, too: Op-
timized heterogeneous computing with parallel patterns. In
International Symposium on Code Generation and Optimiza-
tion,, CGO, 2016.

[12] Samuel Brown et al. Performance comparison of finite-
difference modeling on cell, fpga and multi-core computers.
In SEG/San Antonio Annual Meeting, 2007.

[13] Bryan Catanzaro, Michael Garland, and Kurt Keutzer. Cop-
perhead: compiling an embedded data parallel language. In
Proceedings of the 16th ACM symposium on Principles and
practice of parallel programming, PPoPP, pages 47–56, New
York, NY, USA, 2011. ACM.

[14] Craig Chambers, Ashish Raniwala, Frances Perry, Stephen
Adams, Robert R. Henry, Robert Bradshaw, and Nathan
Weizenbaum. Flumejava: easy, efficient data-parallel pipelines.
In Proceedings of the 2010 ACM SIGPLAN conference on
Programming language design and implementation, PLDI.
ACM, 2010.

[15] Chun Chen, Jacqueline Chame, and Mary Hall. Chill: A
framework for composing high-level loop transformations.
Technical report, Citeseer, 2008.

[16] J. Cong, Bin Liu, S. Neuendorffer, J. Noguera, K. Vissers,
and Zhiru Zhang. High-level synthesis for fpgas: From proto-
typing to deployment. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 30(4):473–491,
April 2011.

[17] Christian de Schryver. FPGA Based Accelerators for Finan-
cial Applications. Springer, 2015.

[18] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. In OSDI, OSDI, pages
137–150, 2004.

[19] S.A. Edwards. The challenges of synthesizing hardware
from c-like languages. Design Test of Computers, IEEE,
23(5):375–386, May 2006.

[20] Nithin George, HyoukJoong Lee, David Novo, Tiark Rompf,
Kevin J. Brown, Arvind K. Sujeeth, Martin Odersky, Kunle
Olukotun, and Paolo Ienne. Hardware system synthesis from
domain-specific languages. In Field Programmable Logic
and Applications (FPL), 2014 24th International Conference
on, pages 1–8, Sept 2014.

[21] Tobias Grosser, Armin Groesslinger, and Christian Lengauer.
PollyâĂŤperforming polyhedral optimizations on a low-level
intermediate representation. Parallel Processing Letters,
22(04):1250010, 2012.

[22] Frederik Grull and Udo Kebschull. Biomedical image pro-
cessing and reconstruction with dataflow computing on fpgas.
In Field Programmable Logic and Applications (FPL), 2014
24th International Conference on, pages 1–2. IEEE, 2014.

[23] Prabhat K. Gupta. Xeon+fpga platform for the data center.
http://www.ece.cmu.edu/~calcm/carl/lib/exe/
fetch.php?media=carl15-gupta.pdf, 2015.

[24] Johann Hauswald, Michael A. Laurenzano, Yunqi Zhang,
Cheng Li, Austin Rovinski, Arjun Khurana, Ronald G. Dres-
linski, Trevor Mudge, Vinicius Petrucci, Lingjia Tang, and
Jason Mars. Sirius: An open end-to-end voice and vision
personal assistant and its implications for future warehouse
scale computers. In Proceedings of the Twentieth Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’15, pages 223–
238, New York, NY, USA, 2015. ACM.

[25] Eric Hielscher. Locality Optimization For Data Parallel Pro-
grams. PhD thesis, New York University, 2013.

[26] Chien-Chin Huang, Qi Chen, Zhaoguo Wang, Russell Power,
Jorge Ortiz, Jinyang Li, and Zhen Xiao. Spartan: A dis-
tributed array framework with smart tiling. In 2015 USENIX
Annual Technical Conference (USENIX ATC 15), pages 1–15,
Santa Clara, CA, July 2015. USENIX Association.

[27] H.M. Hussain, K. Benkrid, H. Seker, and A.T. Erdogan. Fpga
implementation of k-means algorithm for bioinformatics ap-
plication: An accelerated approach to clustering microar-
ray data. In Adaptive Hardware and Systems (AHS), 2011
NASA/ESA Conference on, pages 248–255, June 2011.

[28] HyoukJoong Lee, Kevin J. Brown, Arvind K. Sujeeth, Tiark
Rompf, and Kunle Olukotun. Locality-aware mapping of
nested parallel patterns on gpus. In Proceedings of the 47th
Annual IEEE/ACM International Symposium on Microarchi-
tecture, IEEE Micro, 2014.

[29] Feng Liu, Soumyadeep Ghosh, Nick P. Johnson, and David I.
August. Cgpa: Coarse-grained pipelined accelerators. In
Proceedings of the 51st Annual Design Automation Confer-
ence, DAC ’14, pages 78:1–78:6, New York, NY, USA, 2014.
ACM.

[30] Maxeler Technologies. MaxCompiler white paper, 2011.

[31] Oskar Mencer, Erik Vynckier, James Spooner, Stephen Girdle-
stone, and Oliver Charlesworth. Finding the right level of
abstraction for minimizing operational expenditure. In Pro-
ceedings of the fourth workshop on High performance com-
putational finance, pages 13–18. ACM, 2011.

[32] M. Odersky. Scala. http://www.scala-lang.org,
2011.

[33] Jian Ouyang, Shiding Lin, Wei Qi, Yong Wang, Bo Yu, and
Song Jiang. Sda: Software-defined accelerator for largescale
dnn systems. Hot Chips 26, 2014.

[34] Kalin Ovtcharov, Olatunji Ruwase, Joo-Young Kim, Jeremy
Fowers, Karin Strauss, and Eric S. Chung. Accelerating deep
convolutional neural networks using specialized hardware.
Technical report, Microsoft Research, February 2015.

[35] D. Petkov, R. Harr, and S. Amarasinghe. Efficient pipelin-
ing of nested loops: unroll-and-squash. In Parallel and Dis-

tributed Processing Symposium., Proceedings International,
IPDPS 2002, Abstracts and CD-ROM, pages 6 pp–, April
2002.

[36] Simon Peyton Jones [editor], John Hughes [editor], Lennart
Augustsson, Dave Barton, Brian Boutel, Warren Burton, Si-
mon Fraser, Joseph Fasel, Kevin Hammond, Ralf Hinze, Paul
Hudak, Thomas Johnsson, Mark Jones, John Launchbury,
Erik Meijer, John Peterson, Alastair Reid, Colin Runciman,
and Philip Wadler. Haskell 98 — A non-strict, purely func-
tional language. Available from http://www.haskell.
org/definition/, feb 1999.

[37] Louis-Noël Pouchet. Interative Optimization in the Polyhe-
dral Model. PhD thesis, University of Paris-Sud 11, Orsay,
France, January 2010.

[38] Louis-Noël Pouchet, Uday Bondhugula, Cédric Bastoul, Al-
bert Cohen, J. Ramanujam, P. Sadayappan, and Nicolas Vasi-
lache. Loop transformations: Convexity, pruning and opti-
mization. In 38th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL’11), pages
549–562, Austin, TX, January 2011. ACM Press.

[39] Louis-Noel Pouchet, Peng Zhang, P. Sadayappan, and Jason
Cong. Polyhedral-based data reuse optimization for config-
urable computing. In Proceedings of the ACM/SIGDA In-
ternational Symposium on Field Programmable Gate Arrays,
FPGA ’13, pages 29–38, New York, NY, USA, 2013. ACM.

[40] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek
Chiou, Kypros Constantinides, John Demme, Hadi Esmaeilzadeh,
Jeremy Fowers, Gopi Prashanth Gopal, Jan Gray, Michael
Haselman, Scott Hauck, Stephen Heil, Amir Hormati, Joo-
Young Kim, Sitaram Lanka, James Larus, Eric Peterson, Si-
mon Pope, Aaron Smith, Jason Thong, Phillip Yi Xiao, and
Doug Burger. A reconfigurable fabric for accelerating large-
scale datacenter services. In Proceeding of the 41st Annual
International Symposium on Computer Architecuture, ISCA
’14, pages 13–24, Piscataway, NJ, USA, 2014. IEEE Press.

[41] Andrew R. Putnam, Dave Bennett, Eric Dellinger, Jeff Ma-
son, and Prasanna Sundararajan. Chimps: A high-level com-
pilation flow for hybrid cpu-fpga architectures. In Proceed-
ings of the 16th International ACM/SIGDA Symposium on
Field Programmable Gate Arrays, FPGA ’08, pages 261–
261, New York, NY, USA, 2008. ACM.

[42] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams,
Sylvain Paris, Frédo Durand, and Saman Amarasinghe. Halide:
A language and compiler for optimizing parallelism, locality,
and recomputation in image processing pipelines. In Proceed-
ings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’13, pages 519–
530, New York, NY, USA, 2013. ACM.

[43] Tiark Rompf, Arvind K. Sujeeth, Nada Amin, Kevin Brown,
Vojin Jovanovic, HyoukJoong Lee, Manohar Jonnalagedda,
Kunle Olukotun, and Martin Odersky. Optimizing data struc-
tures in high-level programs. POPL, 2013.

[44] Satnam Singh and David J. Greaves. Kiwi: Synthesis of fpga
circuits from parallel programs. In Proceedings of the 2008
16th International Symposium on Field-Programmable Cus-
tom Computing Machines, FCCM ’08, pages 3–12, Washing-

ton, DC, USA, 2008. IEEE Computer Society.

[45] M.C. Smith, Jeffrey S Vetter, and Sadaf R. Alam. Scientific
computing beyond CPUs: FPGA implementations of com-
mon scientific kernels. In Proceedings of the 8th Annual Mil-
itary and Aerospace Programmable Logic Devices Interna-
tional Conference, 2005.

[46] Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee, Tiark
Rompf, Hassan Chafi, Martin Odersky, and Kunle Olukotun.
Delite: A compiler architecture for performance-oriented em-
bedded domain-specific languages. In TECS’14: ACM Trans-
actions on Embedded Computing Systems, July 2014.

[47] Arvind K. Sujeeth, Hyoukjoong Lee, Kevin J. Brown, Hassan
Chafi, Michael Wu, Anand R. Atreya, Kunle Olukotun, Tiark
Rompf, and Martin Odersky. Optiml: an implicitly parallel
domainspecific language for machine learning. In in Proceed-
ings of the 28th International Conference on Machine Learn-
ing, ser. ICML, 2011.

[48] Arvind K. Sujeeth, Tiark Rompf, Kevin J. Brown, Hy-
oukJoong Lee, Hassan Chafi, Victoria Popic, Michael Wu,
Aleksander Prokopec, Vojin Jovanovic, Martin Odersky, and
Kunle Olukotun. Composition and reuse with compiled
domain-specific languages. In European Conference on Ob-
ject Oriented Programming, ECOOP, 2013.

[49] Mingxing Tan, Gai Liu, Ritchie Zhao, Steve Dai, and Zhiru
Zhang. Elasticflow: A complexity-effective approach for
pipelining irregular loop nests. In Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design, IC-
CAD ’15, pages 78–85, Piscataway, NJ, USA, 2015. IEEE
Press.

[50] The Khronos Group. OpenCL 2.0. http://www.khronos.
org/opencl/.

[51] Anand Venkat, Mary Hall, and Michelle Strout. Loop and
data transformations for sparse matrix code. In Proceedings
of the 36th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2015, pages 521–
532, New York, NY, USA, 2015. ACM.

[52] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin,
Scott Shenker, and Ion Stoica. Spark: cluster computing with
working sets. In Proceedings of the 2nd USENIX conference
on Hot topics in cloud computing, HotCloud’10, pages 10–
10, Berkeley, CA, USA, 2010. USENIX Association.

[53] GL Zhang, Philip Heng Wai Leong, Chun Hok Ho, Kuen Hung
Tsoi, Chris CC Cheung, Dong-U Lee, Ray CC Cheung, and
Wayne Luk. Reconfigurable acceleration for monte carlo
based financial simulation. In Field-Programmable Technol-
ogy, 2005. Proceedings. 2005 IEEE International Conference
on, pages 215–222. IEEE, 2005.

[54] Zhiru Zhang, Yiping Fan, Wei Jiang, Guoling Han, Changqi
Yang, and Jason Cong. Autopilot: A platform-based esl syn-
thesis system. In Philippe Coussy and Adam Morawiec, ed-
itors, High-Level Synthesis, pages 99–112. Springer Nether-
lands, 2008.

[55] Ling Zhuo and Viktor K Prasanna. High-performance de-
signs for linear algebra operations on reconfigurable hard-
ware. Computers, IEEE Transactions on, 57(8):1057–1071,
2008.

