
 

Abstract

 

Thread-level speculation is a technique that enables parallel execu-
tion of sequential applications on a multiprocessor. This paper
describes the complete implementation of the support for thread-
level speculation on the Hydra chip multiprocessor (CMP). The
support consists of a number of software speculation control han-
dlers and modifications to the shared secondary cache memory sys-
tem of the CMP. This support is evaluated using five representative
integer applications. Our results show that the speculative support is
only able to improve performance when there is a substantial
amount of medium–grained loop-level parallelism in the applica-
tion. When the granularity of parallelism is too small or there is lit-
tle inherent parallelism in the application, the overhead of the
software handlers overwhelms any potential performance benefits
from speculative-thread parallelism. Overall, thread-level specula-
tion still appears to be a promising approach for expanding the class
of applications that can be automatically parallelized, but more
hardware intensive implementations for managing speculation con-
trol are required to achieve performance improvements on a wide
class of integer applications.

 

1 Introduction

 

 

A chip multiprocessor (CMP) architecture is a high-performance
and economical solution to the problem of designing microproces-
sors with upwards of a billion transistors. Multiprocessor architec-
tures make it possible to design and optimize a small high-
performance processor and then replicate it across the die. This
architecture offers the traditional benefits of multiprocessing sys-
tems: coarse-grain loop intensive programs and multiprogramming
workloads perform well. In addition, because CMPs support very
low-latency communication and synchronization between the indi-
vidual processors, fine grain parallel programs also perform well
[8]. However, improving the performance of integer C programs
presents a challenge to a CMP because these programs do not typi-
cally contain large amounts of thread-level parallelism. Even when
thread-level parallelism exists it is difficult for a compiler to ana-
lyze the data dependencies between potential parallel threads and
guarantee that the threads are indeed parallel.

In this paper we describe support for data speculation on memory
accesses that makes the parallelization of C programs much easier.
Using data speculation, a compiler and the CMP’s hardware can
partition any program into threads that may execute in parallel,
without regard for data dependencies. Data speculation hardware
mechanisms monitor memory accesses made by the parallel threads
and simply restart any threads that attempt to violate true dependen-
cies from the original program, forcing them to re-execute sequen-
tially. These data speculation mechanisms are particularly attractive
on a CMP, because they rely heavily on a high-bandwidth, low-
latency interconnect between the processors in order to transmit
modified data, dependency violations, and thread control synchro-
nization quickly and efficiently.

The contributions made by this paper are a complete, detailed
description of the realistic hardware and software mechanisms
required to support speculative parallelism in a chip multiprocessor.
We also describe a general thread creation scheme that makes it
possible to exploit non-loop parallelism in addition to the loop-level
parallelism exploited by previous proposals. Furthermore, our
design addresses some of the realistic implementation issues left
unresolved by earlier work. We present cycle-accurate evaluation
results of our implementation that augment some of the theoretical
limit studies presented in earlier work. 

The work described in this paper is based on earlier proposals for
and implementations of multiprocessors with speculative threads.
Knight proposed a speculative thread architecture for mostly func-
tional languages [6] in which hardware is used to enforce the cor-
rect execution of parallel code with side effects. The Multiscalar
paradigm [1] was the first complete description and evaluation of an
architecture for speculative thread parallelism. More recently, oth-
ers have described compiler and hardware speculative thread sup-
port for a CMP [9, 12, 3]. 

The rest of this paper is structured as follows. Section 2 gives a
brief overview of the basic CMP design. Section 3 gives an over-
view of data speculation while Sections 4 and 5 discuss our soft-
ware and hardware support for data speculation and speculative
threads in detail. We present our results in Section 6. Finally, we
conclude in Section 7.

 

2 The Hydra CMP

 

Hydra is our design for a single-chip multiprocessor [4].   All spec-
ulation support described and evaluated in this paper has been
added to this basic design. The CMP contains 4 MIPS processors,
each with a pair of private data caches, attached to an integrated on-
chip secondary cache using a pair of buses as depicted in Figure 1.
The processors use data caches with a write-through policy to sim-
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plify the implementation of cache coherence. All writes propagate
through to the write back secondary cache using the dedicated 

 

write
bus

 

. In order to ensure coherence, the other processors’ data caches
watch this bus — using a second set of cache tags — and invalidate
lines to maintain cache coherence. Interprocessor communication is
supported by processors recovering the updated version of the line
from the shared secondary cache. All other on-chip communication
among the caches and the external ports, such as data cache refills,
are supported by the cache-line-wide 

 

read bus

 

. Both buses are fully
pipelined to maintain single-cycle occupancy for all accesses. Off-
chip accesses are handled using dedicated main memory and I/O
buses. For the applications evaluated in this paper, the bandwidth of
these buses is not a performance bottleneck. A summary of the per-
tinent characteristics of the Hydra CMP memory system appears in
Table 1.

 

3 Data Speculation

 

Data speculation mechanisms allow instructions from a sequential
instruction stream to be reordered, even in the presence of loads and
stores that may be interdependent. Conventional out-of-order uni-
processors can reorder most ALU-type instructions in a RISC pro-
cessor using register renaming and dynamic scheduling. However,
these processors cannot reorder memory access instructions until
the addresses have been calculated for all preceding stores. Only at
this point will it be possible for out-of-order hardware to guarantee
that a load will not be dependent upon any preceding stores. Fine-

grained data speculation allows loads to be speculatively executed
before these store addresses are known. If a true dependency is
actually detected once the prior store addresses are known, the mis-
speculated load and any instructions dependent on it may be dis-
carded and re-executed. As processor instruction windows get
larger, such speculation becomes more important to allow a greater
degree of out-of-order instruction processing.

Data speculation mechanisms can also facilitate the parallelization
of programs for a multiprocessor. Today, programmers or compilers
must carefully divide up a sequential program into separate threads
that are guaranteed to be free of true dependencies through either
registers or memory. This is often difficult to ensure, especially for
memory references. Compilers are not able to statically disambigu-
ate pointers in languages such as C to determine if they may be
pointing to the same data structures [13]. As a result, existing com-
pilers must assume that dependencies may be present and therefore
they generate code conservatively. If a dependency may occur, the
compiler either cannot divide code into threads or must insert
explicit software synchronization between threads.

With thread-level data speculation, a compiler only needs to divide
a sequential program into threads. These threads are given sequence
numbers corresponding to the order in which they would execute
sequentially, but are actually executed in parallel. The data specula-
tion hardware ensures that true dependencies between memory
accesses are always honored, even across processors, by simply
backing up processors that execute a dependent load too early. Fig-

 

Figure 1.   The main datapaths in the Hydra CMP.
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Table 1.   Hydra memory hierarchy characteristics.
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Figure 2.   An example of speculative threads with data 
dependencies.
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ure 2 shows how speculation hardware can use individual stores as
synchronization points to detect violations or pass data between
numbered threads. This mechanism allows parallelizing compilers
to almost obliviously parallelize programs, since memory depen-
dencies do not need to be explicitly grouped into a single thread or
synchronized at compile time. Speculation makes the instruction
windows in the parallel processors appear to be a single, large
instruction window, executing a single thread made up of several
disjoint sections. A compiler may parallelize as aggressively as pos-
sible, only limited by the potential performance gains from parallel-
ization. In Section 4 we describe how we create and manage
speculative threads in the Hydra CMP.

The effective memory behavior desired during speculation is sum-
marized in Table 2 for individual accesses to an address. Writes are
forwarded from earlier threads to later ones. Simultaneously, reads
are recorded within each processor so that true dependence viola-
tions can be detected. Forward progress is always maintained
because one thread will always execute non-speculatively, and so
will be immune from violations. This 

 

head

 

 processor is therefore
actually not speculative at all, a characteristic that can be utilized to
handle exceptional situations such as calls to the operating system.

To provide the desired memory behavior, the data speculation hard-
ware must provide:

1. A method for detecting true memory dependencies, in order to
determine when a dependency has been violated.

2. A method for backing up and re-executing speculative loads
and any instructions that may be dependent upon them when the
load causes a violation.

3. A method for buffering any data written during a speculative
region of a program so that it may be discarded when a viola-
tion occurs or permanently committed at the right time.

In Section 5, we describe how we add the memory system support
for data speculation to the Hydra CMP.

 

4 Speculative Threads

 

The two existing speculative architectures take different approaches
to finding speculative threads within an application. The Multisca-
lar architecture [11] breaks a program into a sequence of arbitrary
tasks to be executed, and then allocates tasks in order around a ring
of processors with direct register-to-register interconnections.
While the division of a program into tasks is done at compile time,
all dynamic control of the threads is performed by ring manage-
ment hardware at runtime. The TLDS architecture [12], based on a
chip multiprocessor, is quite different. Its hardware provides the

minimum support necessary for speculation, as described in the
previous section, and then all thread control is handled by software
routines that are automatically added to a program at the beginning
and end of speculative 

 

epochs

 

 by a compiler.

We use a combined hardware/software approach, similar to TLDS
but with somewhat more hardware support, to divide programs into
threads and then to distribute the resulting threads among the pro-
cessors in the chip multiprocessor. The hardware support is a specu-
lation coprocessor which helps execute a set of software
speculation exception handlers. The extra hardware support
decreases the software overheads relative to the TLDS approach
and our hardware/software approach increases flexibility and
decreases hardware overheads relative to the Multiscalar approach.
The exception handlers divide applications into parallel threads
using two techniques. First, subroutine calls cause a 

 

fork

 

 to occur.
Afterwards, the original processor executes the subroutine, while a
checkpoint of the processor state is handed to another processor so
that it may attempt to execute the code following the subroutine call
speculatively. Second, specially marked loops may have their loop
iterations distributed among the processors. Basic compiler support
for both of these techniques can be achieved without significant
changes to existing compilers.

 

4.1 Subroutine Threads

 

(a) (b)

 

Table 2.   Desired speculative memory behavior. 
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a) shows what happens when the two processors access the location in
correct program order (thread i before thread i+1), while (b) shows what
happens when they access the location in reverse order (i+1 before i)
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Figure 3.   Subroutine fork and return. 

 

B

 

 is a subroutine called within the 

 

A/a

 

 routine.
1. The call is intercepted during normal execution and the 

 

a

 

 thread is sent out
to CPU 1, along with a newly created RPB containing its starting state and
the guess for the return value of 

 

B

 

.
2. The original caller continues by executing the 

 

B

 

 subroutine, staying the
head processor as this happens.

3. Meanwhile, CPU 1 picks up the 

 

a

 

 thread, the caller’s continuation code,
and executes it speculatively. Upon completing this speculative thread, it
must wait to become the head processor. During both the execution and
the waiting time, its speculation mechanisms watch stores from 

 

B

 

 to
ensure that no true dependencies between the threads are violated. The 

 

a

 

thread is restarted 

 

immediately

 

 when such a violation is detected.
4. Upon becoming the head, CPU 1 completes and returns (or restarts and

re-executes the a thread if the original return value prediction was wrong).
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Subroutine speculation is controlled using a linked list of active
threads ordered from least-to-most speculative and maintained by
the speculation support software. When a thread is created, it is
inserted into this active list. The head processor is always running
the thread at the beginning of the active list, while more speculative
processors try to execute the subsequent three threads from the list.
Speculation is initiated with a fork message that is sent to other pro-
cessors when a subroutine call is detected. Figure 3 shows the over-
all sequence of actions in a typical fork. 

When a subroutine call is detected, several steps must occur during
the actual forking operation:

1. The processor allocates a 

 

register passing buffer

 

 (RPB) for the
thread it is creating by allocating one from the free buffer list
maintained by the speculation control support software. Since
our design does not incorporate direct interconnections between
the processors, a buffer in memory is necessary to temporarily
hold a processor’s registers during the register passing commu-
nication from processor to processor. In addition, since these
registers may need to be reloaded if a thread is restarted follow-
ing any sort of speculation violation, it makes sense to allocate a
buffer once that can hold a thread’s starting (or restarting) state
throughout the thread’s lifetime.

2. The new buffer is filled with all registers that may be saved
across subroutines (9 integer and 12 floating point using stan-
dard MIPS software conventions), the current global and stack
pointers, the PC following the subroutine call, and a prediction
of the subroutine’s return value. For this paper, we used the sim-
ple 

 

repeat last return value

 

 prediction mechanism used in [10].
While more complex schemes are possible, this technique
works well because most functions tend to either return the
same thing continuously (void functions and functions that only
return error values are good examples), or they are completely
unpredictable, and therefore should not be selected for specula-
tive execution at all. These unpredictable functions are pruned
off and marked as 

 

unpredictable

 

 after a few mispredictions have
been detected.

3. The new buffer is then inserted into the list of active buffers,
immediately after the current processor’s, as depicted in Figure
4(a). This allows the list of active RPBs to act as the active
thread list, since any 

 

child

 

 thread created will always be the
next-most-speculative thread. The thread list must be main-
tained in memory for two reasons. First, any thread may be
assigned to any processor over the course of its lifetime, so it is
necessary to keep the thread list in a central location that all
may access. Second, since there are frequently more threads
than processors, it is convenient to simply leave the RPBs for
these extra threads lying in memory at the end of the active list
until a processor can be assigned to them.

4. The processor finishes by notifying a free processor (or, if no
free processors are available, the most speculative running pro-
cessor will drop its thread and pick up the new one) that it
should load the registers in the newly created RPB and continue
working on the code after the subroutine call.

These steps are currently performed by an exception handler that is
executed when a subroutine call is detected, so that we could use
commercially available compilers to compile our benchmarks.
While we have vectored exceptions for speculation that avoid the
normal OS exception overhead, inlining the forking code would
definitely be more efficient, since only the live registers would need
to be saved in the RPB. At the processor receiving the fork, another
vectored exception handler gets a pointer to the new buffer from the
active list, reads in the contents of the buffer into its registers, and
starts executing the continuation code following the procedure call.
Due to the overhead inherent in allocating a new buffer and then
saving, communicating, and loading most of a processors’ registers,
very short subroutines are marked 

 

unpredictable

 

 by the return value
prediction mechanism the first time they are executed so that they
will not be considered for speculation on subsequent invocations.

When a subroutine completes after forking off its continuation
code, it returns to the speculation support software, which performs
several more steps to complete the forked subroutine:

1. It waits until it becomes the head processor. This is necessary
because the processor must maintain its dependency violation
detection buffers for this thread until after it becomes the head,
since it may be restarted by dependence violations up until this
point.

2. The actual return value of the subroutine is compared with the
one predicted during the last fork. If a misprediction is detected,
the return value is corrected in the RPB allocated during the last
fork, and then all of the speculative processors are restarted so
that they will execute using the new, correct return value.

3. The RPB of the current thread is returned to the free list as the
next thread becomes the head.

4. The old head processor becomes the most speculative proces-
sor. At this point, it checks to see if there is a fourth RPB that is
not assigned to any processor in the active list. If so, it starts
running the thread associated with that RPB. Otherwise, it is
freed until another fork occurs.

 

4.2 Loop Iteration Threads 

 

A speculative loop is preceded by a check to determine whether or
not it is possible to start a speculative loop. The loop is executed
normally if it is known to have poor speculative performance. How-
ever, if the loop is a good candidate for speculation, a modified ver-
sion of the loop body, transformed into a self-contained function, is
executed repeatedly. Loop iterations are executed on all available
processors. They are distributed among processors so that when
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Figure 4.   Managing Register Pass Buffers (RPBs).
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, running on the head processor, completes, that iter-
ation’s results are committed to memory and the processor starts
running the next loop iteration that has not yet been allocated to a
processor, usually 

 

i+4

 

, becoming the most speculative processor in
the process. Meanwhile, the 

 

i+1

 

 iteration becomes the head itera-
tion and is allowed to repeat the cycle. This pattern continues until
one of the loop iterations detects a loop terminating condition, and
notifies the speculation system. When this processor becomes the
head, all processors executing loop speculation are cancelled and
execution returns to normal. A simple example of this execution
sequence is depicted in Figure 5.

Two different sets of control code are used for executing loops.
When starting a large loop, in which the forking of subroutines
within a loop is desirable, a circle of RPBs pointing to the loop
body subroutine is inserted into the active thread list when the loop
is started (Figure 4(b)). Subsequently, when a loop iteration com-
pletes on the head thread, its RPB is recycled to the end of the loop,
as the figure indicates. Aside from the RPB recycling and the fact
that fewer registers must be saved and restored when starting a loop
subroutine, the system works much like it does with procedure
forks. Since the active RPB list works the same at all times, this
model allows speculative thread forks from within a loop or even a
loop within a loop to work correctly. However, a loop within a loop
is impractical, even it works correctly, because enough loop RPBs
are always inserted into the active list when any loop is started so
that all processors will always be working on the innermost loop or
subroutines inside of it. Hence, RPBs from outer loop iterations
will always be far enough back on the active list that they will never
execute until the inner loop completes. As a result of this processor
allocation scheme, if nested loops are encountered, we must choose
which loop is the best choice for speculative execution. Only a sys-

tem with a very large number of processors could practically con-
sider dividing up the free processors among several different
parallel or nested loops in order to run speculative iterations from
more than one at a time. The second set of control code is faster, but
less flexible. For loops that do not contain subroutines that need to
be forked, this 

 

quick

 

 set of routines allocates a set of four RPBs for
the loop, one per processor, and then locks each processor into an
RPB (Figure 4(c)). The overhead of the control routines associated
with these loops is much lower because it does not have to manipu-
late the active RPB list after every loop iteration to perform RPB
recycling or deal with forks or nested loops inside of the loop,
because these are simply executed inline. While we have not cur-
rently implemented this feature, it would be possible for a compiler
to generate code that could first use the slow but sophisticated loop
control routines to dynamically measure a loop’s contents, includ-
ing that of any inner loops, and then select the quicker routines for
loops that do not need the flexibility of the full loop handler based
on its measurements.

A possible problem with loop speculation is that it may increase the
amount of memory traffic and the instruction count during the loop.
The speculative version of the loop cannot register allocate vari-
ables that are shared across loop iterations, because the data specu-
lation mechanisms cannot protect against true dependency
violations in registers. A more complex architecture, similar to the
Multiscalar architecture [11], could track dependencies between the
processors’ register files, but this is difficult to implement in hard-
ware without an impact on the processor core’s performance.
Unlike our L2 memory system, the register files are an integral part
of each processor’s pipeline, and modifications to allow communi-
cation between them would likely decrease each processor’s core
cycle time.

 

4.3 Thread Size

 

Serious consideration must be given to the size of the threads
selected using the mechanisms we have described, for the following
reasons:

 

•

 

Limited buffer size: Since we need to buffer state from a specu-
lative region until it commits, threads need to be short enough
to avoid filling up the buffer space allocated for data speculation
too often. An occasional full buffer can be handled by simply
stalling the thread that is producing too much state until it
becomes the head processor, when it may continue to execute
while writing directly to memory. However, if this occurs too
often, performance will suffer.

 

•

 

True dependencies: Excessively large threads have a higher
probability of dependencies with later threads, simply because
they issue more loads and stores. With more true dependencies,
more violations and restarts occur.

 

•

 

Restart length: A late restart on a large thread will cause much
more work to be discarded, since a checkpoint of the system
state is only taken at the beginning of each thread. Shorter
threads result in more frequent checkpoints and thus more effi-
cient restarts.

 

•

 

Overhead: Very small threads are also inefficient, because there
is inevitably some overhead incurred during thread creation and
completion. Programs that are broken up into larger numbers of
threads will waste more time on these overheads.

Our on-chip bus communication mechanisms between processors
typically result in overheads of 10–100 cycles for most speculation
operations. In order to amortize these overheads while still keeping

 

Figure 5.   A simple example of a speculatively executed loop.
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threads short enough to avoid the long-thread problems, threads of
300–3000 instructions are optimal.

Not all loop bodies and subroutines are in this perfect size range.
Also, many of these possible threads have too many true dependen-
cies across loop iterations or with their calling routines to ever
effectively achieve speedups during speculative execution. With an
infinite number of procesors, it is possible to attempt to run every
loop iteration and subroutine in parallel. However, many processors
would be wasted achieving negligible speedups on the nonparallel
routines. Unfortunately, we only have a finite number of processors.
As a result, care must be taken to allocate these processors to spec-
ulative threads that are likely to improve performance.

There are two heuristics that we use to find and prevent speculation
on nonparallel threads: violation counters, to eliminate threads with
many dependencies, thread timers, to eliminate threads that are too
short or long, and stall timers, to find threads that are stalled too
long. Once nonparallel threads are discovered, we record that they
should not be speculated on in a prediction table. We currently
maintain a hardware prediction table, but it would be possible to
perform this entirely in software at the cost of more overhead in the
thread forking routines.

 

4.4 Synchronization

 

If a compiler can identify a variable in a speculative region that is
likely to cause frequent violations, it may put explicit synchroniza-
tion into the code, protecting the critical region where the variable
is used, to eliminate the violations caused by those regions. This
synchronization mechanism is simply a busy-wait loop at the begin-
ning of the critical region that reads a lock variable, using a load
instruction that will not cause violations when a less speculative
processor updates the lock (in our simulator, the MIPS load locked
instruction is given these semantics during speculation, since it is
not needed for normal multiprocessor synchronization while the
speculation hardware is active). At the end of the critical region, a
normal store instruction may be used to indicate that the lock is free
to the next speculative region.

It should be noted that unlike traditional MP synchronization, spec-
ulation synchronization is only used to improve performance, and is
not necessary to ensure correct code execution. As a result, it can
often be avoided for many variables that would traditionally require
synchronization. Instead, only the few variables that cause exces-
sive numbers of violations are targeted for synchronization.

 

4.5 Support for Precise Exceptions

 

If a speculative thread requires operating system services through a
system call or an exception, the thread is stalled until it becomes the
head processor. At that time, the operating system, which is not
compatible with speculative execution, may be safely entered. If a
thread violates or is aborted while waiting, the operating system
call or exception is simply discarded. This is critical because specu-
lative threads frequently cause segmentation faults by dereferencing
null pointers or accessing data beyond the end of arrays. These
extraneous segmentation faults must be squashed because they
would not occur in sequential execution.

 

4.6 System Level Issues

 

In our implementation, speculative threads can coexist with other
speculative and non-speculative threads from the same process or
from a completely different process. When a point in the execution
of the program is reached where there are explicitly parallel threads

generated by a compiler or by hand, it is possible to turn off the
speculative support and just execute the threads like a traditional
multiprocessor. This can be done dynamically as the program exe-
cutes. Speculation can be re-enabled when a speculative region of
the program is reached. A feature of our speculative thread imple-
mentation is that it is possible for the operating system to steal one
or more processors from a process while it is executing a specula-
tive region. In this case the speculative control mechanisms release
the most speculative processors. These processors can be used to
run other speculative or non-speculative threads from another pro-
cess.

 

4.7 The Speculation Control Coprocessor

 

The hardware-software interface used to control speculative threads
is implemented using the MIPS coprocessor CP2 interface. Our
simple coprocessor has several hardware mechanisms for control-
ling speculation. A collection of small software control routines is
used to operate CP2. These functions are listed in Table 3. As is
noted in the table, some are invoked directly by software, while oth-
ers act as exception handlers triggered by hardware events or mes-
sages from other processors in the system. CP2 maintains a table of
exception vectors for speculation events, so these exception han-
dling routines can all be started without the overhead of the operat-
ing system’s normal exception dispatcher. Internally, the
coprocessor uses four identical state machines to track the state of
the threads executing on all processors, so that exceptions may be
generated or screened correctly depending upon the overall state of
the system. Finally, the coprocessor contains the timers and predic-
tion tables used to prevent speculation on nonparallel threads and to
predict return values for speculative procedure continuations.

Many state transitions are initiated by messages sent between pro-
cessors during the speculation control routines. These stores are all
to a special memory address used only for message passing, using
normal store instructions. When another processor sees a store to
this special address on the write bus, it responds by modifying its
internal state, and/or triggering an exception and starting the appro-
priate handler.

 

5 Hardware Support for Data Speculation

 

Previous data speculative architectures have proposed several dif-
ferent mechanisms for handling speculative memory accesses. The
first was the ARB, proposed along with the Multiscalar processor
[2]. This was simply a data cache shared among all processors that
had additional hardware to track speculative memory references
within the cache. While a reasonable first concept, it requires a
shared data cache and adds complex control logic to the data cache
pipeline which has the potential to increase load latency and limit
data cache bandwidth. More recently, the Multiscalar group has
introduced the speculative versioning cache [3], a set of separate
data caches distributed among the processor cores in the Multisca-
lar processor that maintain their speculative state within the caches
using a complex and sophisticated writeback cache protocol. Con-
currently, the TLDS researchers have proposed a similar scheme
[12]. However, they chose to keep their protocol much simpler, at
the expense of performance-limiting bursts of coherence bus traffic
at the end of every speculative epoch and an inability to forward
data from speculative iterations using normal memory references.
Instead, they added a special shadow memory for critical values
that require early forwarding between epochs. This places an added
burden on the compiler to identify the values that need to be for-
warded.



 

In our implementation, we took advantage of Hydra’s write-through
data caches and bus system to build a protocol that is easily imple-
mented without impacting the CMP’s basic cycle time, is as effi-
cient as the SVC scheme, and only requires simple coherence
protocols. To add this speculation support, several key hardware
elements have been added to the existing Hydra design. A block
diagram of these additions, including their interface to the control
coprocessor, is shown in Figure 6. The remainder of this section
describes these additions.

 

5.1 Data Cache Modifications

 

Each data cache line tag includes several additional bits to record
state necessary for speculation as shown in Figure 7. The first two
bits are responsible for modifying the basic cache coherence
scheme that invalidates a data cache line only when a write to that
line from another processor is seen on the write bus.

 

•

 

Modified bit: This bit acts like a 

 

dirty

 

 bit in a writeback cache.
If any changes are written to the line during speculation, this bit
is set. These changes may come from stores by this processor or
because a line is read in that includes speculative data from
active secondary cache buffers. If a thread needs to be restarted
on this processor, then all lines with the modified bit set are
gang-invalidated at once.

 

•

 

Pre-invalidate bit: This optional bit is set whenever another pro-
cessor writes to the line, but is running a more speculative
thread than this processor. Since writes are only propagated
back to more speculative processors, we are able to safely delay
invalidating the line until a different, more speculative thread is
assigned to this processor. Thus, this bit acts as the opposite of
the modified bit — it invalidates its cache line when the proces-
sor completes a thread. Again, all lines must be designed for
gang-invalidation. If pre-invalidate bits are not included, writes
from more speculative processors must invalidate the line
immediately to ensure correct program execution.

 

Table 3.   A summary of the software handlers required to support speculation
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Figure 6.   Hydra speculation hardware.
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Figure 7.   Data cache tag bits used for speculation.
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The other two sets of bits allow the data cache to detect true depen-
dence violations using the write bus mechanism. They must be
designed to allow gang-clearing of the bits when a speculative
region is either restarted or completed.

 

•

 

Read bits: These bits are set whenever the processor reads from
a word within the cache line, unless that word’s written bit is
set. If a write from a less speculative thread, seen on the write
bus, hits an address in a data cache with a set read bit, then a
true dependence violation has occurred between the two proces-
sors. The data cache then notifies the processor’s CP2, initiating
a violation exception. Subsequent stores will not activate the
written bit for this line, since the potential for a violation has
been established.

 

•

 

Written bits: To prevent unnecessary violations, this bit or set of
bits may be added to allow renaming of memory addresses used
by multiple threads in different ways. If a processor writes to an
entire word, then the written bit is set, indicating that this thread
now has a locally generated version of the address. Subsequent
loads will not set any read bit(s) for this section of the cache
line, and therefore cannot cause violations.

It should be noted that all read bits set during the life of a thread
must be maintained until that thread becomes the head, when it can
no longer needs to detect dependencies. Even if a cache line must
be removed from the cache due to a cache conflict, the line may still
cause a speculation violation. Thus, if the data cache attempts to
throw out a cache line with read bits set it must instead halt the pro-
cessor until the thread becomes the head or is restarted. This prob-
lem can largely be eliminated by adding a small victim buffer [5] to
the data cache. This victim buffer only needs to record the address
of the line and the read bits in order to prevent processor halts until
the victim cache is full. To simplify our current implementation, we
assume that an infinite-size victim buffer, containing only read bits
and addresses, is attached to each data cache.

 

5.2 Secondary Cache Buffers

 

Buffering of data stored by a speculative region to memory is han-
dled by a set of buffers added between the write bus and the second-
ary cache (L2). During non-speculative execution, writes on the
write bus always write their data directly into the secondary cache.
During speculation, however, each processor has a secondary cache
buffer assigned to it by the secondary cache buffer controller, using
a simple command sent over the write bus. This buffer collects all
writes made by that processor during a particular speculative
thread. If the thread is restarted, then the contents of the buffer are
discarded. If the thread completes successfully, then the contents
are permanently written into the secondary cache. Since threads
may only complete in order, the buffers therefore act as a sort of
reorder buffer for memory references.

The buffers, depicted in Figure 8, consist of a set of entries that can
each hold a cache line of data, a line tag, and a byte-by-byte write
mask for the line. As writes are made to the buffer, entries are allo-
cated when data is written to a cache line not present in the buffer.
Once a line has been allocated, data is buffered in the appropriate
location and bits in the line-by-line write mask are set to show
which parts of the line have been modified.

Data may be forwarded to processors more speculative than the one
assigned to a particular secondary cache buffer at any time after it
has been written. When one of these later processors misses in its
data cache, it requests data from the secondary, as in the normal
system. However, it does not just get back data from the secondary
cache. Instead, it receives a line that consists of the most recent ver-

sions of all bytes in the line. This requires priority encoders on each
byte to select the newest version of each byte from among this
thread’s buffer, all buffers from earlier threads that have not yet
drained into the secondary, and the permanent value of the byte
from the secondary cache itself. The composite line is assembled
and returned to the requesting processor as a single, new, and up-to-
date cache line. While this prioritization and byte assembly is rea-
sonably complex, it may be done in parallel with each secondary
cache read — normally a multicycle operation already. 

When a buffer needs to be drained, the processor sends out a mes-
sage to the secondary cache buffer controller and the procedure is
initiated. Buffers drain out entry-by-entry, only writing the bytes
indicated in the write mask for that entry. Since the buffers are
physically located next to the secondary cache, the buffer draining
may occur on cycles when the secondary cache is free, without the
use of any global chip buses. In order to allow execution to continue
while buffers drain into the secondary, there are more sets of buffers
than processors. Whenever a processor starts a new thread, a fresh
buffer is allocated to it in order to allow its previous buffer to drain.
Only in the very unlikely case that new threads are generated so
quickly that all of the buffers contain data must new threads be
stalled long enough to allow the oldest buffers to drain out.

Buffers may fill up during long running threads that write too much
state out to memory. If these threads are not restarted, they wait
until they become the head processor, write their buffers into the
secondary cache, and then continue executing normally, writing
directly to the secondary cache. To detect this 

 

buffer full

 

 problem,
each processor maintains a local copy of the tags for the write
buffer it is currently using. This local copy can detect buffer full
conditions while the store that will overflow the buffer is executing.
This store then causes an exception, much like a page fault, which
allows the speculation mechanisms to handle the situation.

 

Figure 8.   The secondary cache write buffers.
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5.3 An Overall View of Speculative Support

 

To briefly illustrate how these modifications work together, Figures
9 and 10 show the operation of speculative loads and stores.  

 

6 Performance Evaluation

 

For our performance evaluation we use five representative integer
applications written in C that are not parallelizable using conven-
tional compiler technology. Four of the applications, 

 

compress

 

,

 

m88ksim

 

,

 

 ijpeg

 

,

 

 vortex

 

, are from the SPEC95 benchmark

suite and the fifth application, 

 

wc

 

, is a UNIX utility. To generate
speculative versions of these applications we use a simple source-
to-source translator to convert the 

 

for

 

 and 

 

while

 

 loops into specu-
lative 

 

for

 

 and 

 

while

 

 loops. The speculative source code is com-
piled using 

 

cc

 

 with 

 

-O2

 

 optimization running under SGI IRIX 5.3.
The speculation control software was written in hand-optimized
MIPS assembly language, to minimize the overhead of these criti-
cal routines as much as possible.

Our simulator models a cycle-accurate MIPS multiprocessor built
from 4 simple pipelined processors, attached to a memory system
that realistically models the memory delays and contention in the
Hydra CMP. User code within C library functions is run under sim-
ulation, but actual operating system calls are handled by tempo-
rarily dropping from the simulator to the real machine for the
duration of the call.

We present the performance results as the speedup of a four proces-
sor CMP executing a speculative application compared to one of
the CMP’s processors executing an optimized sequential version of
the same application. The rationale for this way of presenting the
performance results is that we are interested in the performance
benefits of adding speculation to an existing CMP rather than a
comparison of a speculative CMP with an alternative architecture.

Our results for the five benchmarks are summarized in Table 4 and
Figure 11. The table gives speedup values from key benchmarks
that we tested. The table also lists some important figures about the
memory system: average miss rates for the data caches for both the
non-speculative and speculative cases, and the percentage increase
in load traffic when moving from a non-speculative to speculative
mode of operation. The larger miss rates during speculation reflect
the fact that interprocessor communication during speculation
results in invalidations followed by data cache misses that then
recover the new data from the L2 cache. The increased number of
loads is due to a combination of running speculative control han-
dlers, superfluous speculative memory accesses performed by spec-
ulative threads that are subsequently restarted, and the fact that
speculative loops cannot register allocate actively communicated
variables, increasing the number of memory reference instructions
that must be generated to do the same work. However, 

 

compress

 

was an anomaly, since the code that was generated by our compiler
for the entire uniprocessor 

 

compress()

 

 function required more
register saving across function calls than the small section of code
within our subroutine-packaged version of the loop body used by
the speculative loop mechanism.

 

Figure 9.   The operation of speculative loads.

 

1. A CPU first reads from its data cache. The read bit for the word is set, if the
written bit for the word does not indicate that it is already a local copy.

2. In the event of an data cache miss, the L2 cache and write buffers are all
checked in parallel. The newest bytes written to a line are pulled in by pri-
ority encoders on each byte, according to the indicated 1–5 priorities (1 =
highest priority, 5 = lowest). This line is then returned to the CPU using the
read bus. The requested word is delivered to the CPU (a), while the line is
delivered to the data cache (b). The read bits for the word just read and the
modified bits are set. A possible optimization would be to not set the modi-
fied bit if the line only came from the L2 cache, without any speculative
additions from the buffers, but we chose not to implement this.

 

Figure 10.   The operation of speculative stores.

 

1. On a store, each CPU writes to its data cache, if the line is present there,
and its assigned write buffer, using the write bus. The modified bit of any
hit lines in the data cache are set. If the read bit of the word stored to is
cleared, then the written bit is set to indicate that this word is now a local
copy. The data from the store is recorded in the store buffer in a newly-allo-
cated line or included in an existing line.

2.

 

Earlier

 

 CPUs invalidate data cache lines directly, if they write to a cache
line present in the data cache. Also, these writes cause dependence
checks. If they write to a location in the data cache or victim buffer with the
read bit set, a true dependence violation has been detected, and the pro-
cessor is forced to restart.

3.

 

Later

 

 CPUs just cause the pre-invalidate bits in our data cache lines to be
set, so that the lines will be invalidated when a new thread is allocated to
this CPU.

4. When the contents of a write buffer are no longer speculative, the buffer is
allowed to drain out into the L2 cache on free cycles.
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Table 4.   Benchmark performance summary.
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6.1 Benchmark Analysis

 

Our results from 

 

wc

 

 demonstrate that the software control over-
heads associated with our implementaion of speculation can
severely limit speculation performance. The core of 

 

wc

 

 is a single
loop that takes an average of only 27 cycles per iteration with fully-
optimized uniprocessor code, other than the occasional iterations
when the call to

 

 getchar()

 

 within the loop must request more
characters from the OS. Even using the quick loop primitives, the
speculation control software requires approximately 40% of the
time on all of the processors just to handle the frequent iteration
completions (on the head and #3 processor) and dependency viola-
tions (on processors 1-3), since the 10-15 instruction overhead of
these operations is about half of the entire loop time! Even with this
overhead, the parallelism that speculation is able to expose in the
loop still allows about 40% of the system’s processor time to work
on the actual code. If all of this time could be exploited produc-
tively, a speedup of 1.6 could be obtained. However, an entire pro-
cessor’s worth of performance is lost to two factors related with
interprocessor communication. First, 

 

wc

 

 has two critical loop car-
ried-dependencies that cannot be avoided — the buffer pointer in
the 

 

getchar()

 

 library call, and the local 

 

in a word

 

 variable that is
used to count words. While the uniprocessor hits in its data cache
when accessing these variables, a speculative processor must devote
ten or more cycles to handling the data cache misses associated
with this communication. Additionally, as noted previously, this
communication forces the compiler to insert loads and stores to
move the values to and from memory during every iteration to facil-
itate communication, preventing the register allocation of these
commonly-used variables that may be used in the uniprocessor
code. The combined effect of these two communication-related
inefficiencies consumed a processor’s worth of execution time on
this small loop. Due to the critical nature of these memory depen-
dencies, we also discovered that it was possible to speed up 

 

wc

 

 sim-
ply by putting a delay loop at the end of each iteration. The small
delay incurred by the loop caused the iterations to pipeline more
effectively, avoiding more of the overhead associated with viola-
tions at the expense of busy-waiting in the delay loop.

The loop in

 

 m88ksim

 

 is over two orders of magnitude larger, run-
ning for about 5000 cycles and executing an average of 4500
dynamic instructions during each iteration. With such a long loop,
the overhead associated with speculation control and inter-proces-

sor communication had a minimal impact on the overall execution
time. Instead, some of 

 

m88ksim

 

’s global variables are read and
written at locations in the loop, some inside subroutines, that
severely curtail the amount of parallelism that may be exploited.
The first speculative processor can use about 15% of its time use-
fully by overlapping the beginning of each loop iteration with the
end of the previous one, but most of this time is simply spent over-
coming the communication inefficiencies, limiting speedup to
3.5%. Meanwhile, the second and third processors contribute noth-
ing, as they must work on iterations two or more ahead that cannot
overlap with the head iteration at all due to true dependencies. Pre-
vious work has shown that an aggressive compiler, designed to
move loads associated with receiving interprocessor communica-
tion as late as possible in each iteration and sending communicating
writes as early as possible, might allow more speedup by overlap-
ping iterations more and allowing much of the discarded time to be
used effectively [12, 10], but such aggressive compiler optimiza-
tions are beyond the scope of this work.

In between 

 

wc

 

 and 

 

m88ksim

 

 is 

 

compress

 

. The core of 

 

compress

 

is fairly small loop — about 140 cycles per iteration — but large
enough so that the speculation and communication overheads,
while significant, do not overwhelm its execution time. Even when
we left a critical loop-carried variable alone, performance was
essentially equal to the uniprocessor version. However, since this
single variable was such a bottleneck we were able to successfully
put a synchronization point (described in Section 4.4) around it, a
simple transformation that a compiler should be able to perform. By
exchanging some time spent busy-waiting at the synchronization
point for the longer violation-and-restart cycles that would other-
wise be necessary we were able to increase iteration pipelining and
achieve a 9% performance boost with this simple addition.

 

Ijpeg

 

 is an application with significant amounts of loop-level par-
allelism. Using our straightforward loop transformations, we were
able to convert most of the loops in 

 

ijpeg

 

 into speculative loops
that executed on all four processors. There were still occasional
dependencies between loop iterations, but these did not signifi-
cantly impact performance. Almost all of the discarded execution
was the result of subroutine forks in the unparallelizable code
(mostly in the Huffman encoding step of compression) between the

 

Figure 11.   Processor utilization breakdown.
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loops. These portions of the program are executed in a manner very
similar to vortex , described below. This benchmark clearly indi-
cates that our loop speculation mechanisms are able to exploit par-
allelism in code when that parallelism exists, even without
extensive compiler optimizations. With aggressive optimizations,
these results should be even better, as ijpeg  is currently written so
that a fairly large amount of the existing parallelism is often
obscured by the existing program flow, especially during the decod-
ing stage of the application.

Finally, our results on vortex  indicate that subroutine parallelism
cannot be effectively utilized by our simulator due to control soft-
ware overhead and a lack of parallelism between the code in sub-
routines and the continuation code following them. Our simple last
value return value prediction mechanism was able to obtain a
96.6% successful prediction accuracy when speculating on the
pseudo-OOP vortex  code, thanks to the large number of functions
that return nothing or rarely-raised error flags. However, the severe
misprediction penalty for the remaining 3.4% of the predictions —
complete flushing of the system’s speculative state — combined
with frequent memory dependence violations originating from the
side effects of the functions made parallelism virtually impossible
to find. Most of the speculative processors spend their time waiting
to become the head, since the wide variety of subroutines run in dif-
ferent threads leads to load imbalance. Each time a long subroutine
becomes the head, three short ones are typically stuck waiting on
the three speculative processors. Increasing the amount of parallel-
ism exploitable would require a very sophisticated compiler that
performed interprocedural optimizations to increase the distance
between loads and stores that might be communicated between pro-
cessors running different subroutines in parallel. It might also be
forced to break up longer subroutines into smaller parts to help
solve load balancing problems. It should also be noted that the
overhead associated with software control of speculation is excep-
tionally high because vortex  is parallelized only using speculative
procedure continuation, which must use the full subroutine control
protocol instead of the low-overhead looping protocols. As a result,
the overhead is comparable to that associated with fairly small
loops like wc or compress  even though the subroutines are gener-
ally much larger than the loops in those benchmarks, since small
subroutines are simply pruned off and avoided by our speculative
thread selection mechanisms.

6.2 Memory Results

While our results indicate shortcomings in the software-based con-
trol system, the memory buffering system described in Section 5
worked very well. We found that the memory system added very lit-
tle latency beyond the basic L2 cache hit time required after every
communication invalidation, since it was originally designed to
handle the loads of large multiprocessor FP applications. We deter-
mined that the optional pre-invalidation bits only help improve per-
formance by 1-2%, but the hardware overhead necessary to add
these bits is so small that their inclusion in the final design still
makes sense. On the other hand, the write bits proved to be essen-
tial, as all of our simulations done without them resulted in the use-
ful work done by the speculative processors dropping to nearly zero
in most cases due to false violations on WAW hazards.

Figure 12 shows the numbers of 64B L2 buffers filled during each
successful speculative thread. The results clearly indicate that a
buffer of 24-32 lines (1.5 KB – 2 KB) per processor is sufficient to
handle even fairly large loop iterations or subroutines. Even the
m88ksim  loop iterations would have fit in a 21-line buffer. A small
number of the subroutines speculated on in vortex  and ijpeg
required more buffer space, but these routines were infrequent
enough that simply dumping their store buffer state into the L2
cache and then completing the iteration non-speculatively after
becoming the head processor would probably have little impact on
performance, as most of these routines would be running on the
head processor by the time they filled up a 2 KB buffer anyway.

These results indicate that the basic Hydra memory system lends
itself well to speculative operation. Allowing for a fifth 2 KB buffer,
so that one is free to drain while the other four accept references
from processors, the system requires only about 13KB of extra on-
chip memory — smaller than one of the eight existing data caches.
Even allowing for a fair amount of control logic overhead, it seems
reasonable to believe that the hardware we propose would not be
larger than a pair of the existing data caches, which is a small frac-
tion of the total die area.

7 Summary and Conclusions

We have demonstrated that by judicious use of hardware and soft-
ware mechanisms it is possible to add data speculation capability to
a CMP. Our results indicate that a data speculation system similar to
ours can extract “hidden” parallelism from loops in uniprocessor
code. It does this by allowing compilers to obliviously parallelize
loops that cannot be fully analyzed for dependencies at compile
time due to problems such as C pointer disambiguation. If there is
parallelism, as on ijpeg , the application can speed up signifi-
cantly. If there is not, as on m88ksim , the application still works,
even if speculation provides no benefit. An optimizing compiler
designed to arrange loads and stores to optimize communicated
dependencies as much as possible among speculative threads might
help this further [12]. However, our mechanisms to extract non-
loop parallelism were hindered by the high software overhead of
the reasonably complex control code, the load imbalance caused by
running a mix of subroutines of varying sizes, and frequent memory
dependencies caused by the side effects of subroutines. We feel that
the results obtained using one particular speculation implementa-
tion are not sufficient to condemn the concept of subroutine contin-
uation speculation, especially since we lacked special compiler
support. However, our results clearly indicate that software control
of speculation only makes sense if the control protocols are fairly
simple, such as our “quick” loops, to avoid slowdowns when specu-
lative code lacks parallelism and the speculative overhead is there-
fore wasted. Instead, more complex thread-generation and control
algorithms clearly demand more sophisticated hardware support,
such as that included in the Multiscalar architecture [11].Figure 12.   Speculative store buffer size requirements.
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Our results clearly indicate that it does not make sense to design a
CMP just to take advantage of speculative execution. The primary
reasons for switching to a CMP are technology issues, its parallel
programming performance, and its multiprogramming perfor-
mance, as noted in [8]. However, speculation does not require the
addition of a large amount of hardware to an existing CMP, so the
cost-to-benefit ratio is reasonable enough to consider including it
for the applications in which it proves helpful. As shown in [8], the
individual processors in a CMP will typically be slower than a con-
ventional wide superscalar processor of equal area while running
sequential applications. Since the results in that paper indicated that
a single, large superscalar processor would just be moderately
faster than one of the processors in a CMP on these applications,
speculation may allow a CMP to provide competitive performance
on programs that have parallelism that cannot be extracted with a
conventional parallelizing compiler. Optimizing compilers
designed to generate code specifically for a speculative CMP might
allow an even larger number of programs to benefit [10, 12]. Thus,
speculation may help bridge the gap between the performance of
CMPs and superscalar architectures on applications that a parallel-
izing compiler cannot handle. Also, the ability to flexibly deactivate
speculation on processors is an advantage that should not be over-
looked. When speculation proves to be unproductive, or if a truly
parallel section of code is encountered, a CMP with speculation can
quickly transform into a conventional SMP to run a parallel or mul-
tiprogramming workload with speedups that can greatly exceed
those obtained only by exploiting parallelism within a thread, a fea-
ture that does not exist on conventional processors.

Considering our previous results from [8], it is clear that in the near
future, a superscalar architecture is the best way to extract fine-
grained uniprocessor parallelism from C integer program codes,
given a certain amount of die area. However, it should be noted that
the fine-grained threaded parallelism extracted by data speculation
is orthogonal to the instruction-level parallelism extracted by super-
scalar ILP mechanisms. Thus, when it is possible to implement sev-
eral wide-issue superscalar processors on a die together as a CMP,
but impractical to simply make a larger single processor, a specula-
tion mechanism similar to the one we propose might become a
much more attractive method to extract additional performance
from uniprocessor codes.
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