Data Speculation Support for a Chip Multiprocessor

Lance Hammond, Mark Willey and Kunle Olukotun

Computer Systems Laboratory
Stanford University
Stanford, CA 94305-4070
http://www-hydra.stanford.edu/

Abstract In this paper we describe support for data speculation on memory
accesses that makes the parallelization of C programs much easier.

Thread-level speculation is a technique that enables parallel execdSing data speculation, a compiler and the CMP's hardware can
tion of sequential applications on a multiprocessor. This papdpd'tition any program into threads that may execute in parallel,

describes the complete implementation of the support for threag\-”thom _regard for data dependencies. Data speculation hardware
mechanisms monitor memory accesses made by the parallel threads

level speculation on the Hydra chip multiprocessor (CMP). Theny gimply restart any threads that attempt to violate true dependen-
support consists of a number of software speculation control harses from the original program, forcing them to re-execute sequen-
dlers and modifications to the shared secondary cache memory s¥igily. These data speculation mechanisms are particularly attractive
tem of the CMP. This support is evaluated using five representativsn a CMP, because they rely heavily on a high-bandwidth, low-

integer applications. Our results show that the speculative supportl&tency interconnect between the processors in order to transmit
only able to improve performance when there is a substantighodified data, dependency violations, and thread control synchro-
amount of medium—grained loop-level parallelism in the applicahization quickly and efficiently.

tion. When the granularity of parallelism is too small or there is lit-

; ; f o The contributions made by this paper are a complete, detailed
tle inherent parallelism in the application, the overhead of th. escription of the realistic hardware and software mechanisms

X) ! @quired to support speculative parallelism in a chip multiprocessor.
from speculative-thread parallelism. Overall, thread-level speculape 3150 describe a general thread creation scheme that makes it
tion still appears to be a promising approach for expanding the claggssible to exploit non-loop parallelism in addition to the loop-level
of applications that can be automatically parallelized, but morgarallelism exploited by previous proposals. Furthermore, our
hardware intensive implementations for managing speculation comlesign addresses some of the realistic implementation issues left
trol are required to achieve performance improvements on a widgnresolved by earlier work. We present cycle-accurate evaluation
class of integer applications. results of our implementation that augment some of the theoretical
limit studies presented in earlier work.
1 Introduction The work described in this paper is based on earlier proposals for
and implementations of multiprocessors with speculative threads.
A chip multiprocessor (CMP) architecture is a high-performancenight proposed a speculative thread architecture for mostly func-
and economical solution to the problem of designing microprocesional languages [6] in which hardware is used to enforce the cor-
sors with upwards of a billion transistors. Multiprocessor architeCrect execution of parallel code with side effects. The Multiscalar
tures make it possible to design and optimize a small highparadigm [1] was the first complete description and evaluation of an
performance processor and then replicate it across the die. Thigchitecture for speculative thread parallelism. More recently, oth-

architecture offers the traditional benefits of multiprocessing sysers have described compiler and hardware speculative thread sup-
tems: coarse-grain loop intensive programs and multiprogrammingort for a CMP [9, 12, 3.

workloads perform well. In addition, because CMPs support very

low-latency communication and synchronization between the indiThe rest of this paper is structured as follows. Section 2 gives a
vidual processors, fine grain parallel programs also perform welbrief overview of the basic CMP design. Section 3 gives an over-
[8]. However, improving the performance of integer C programsyiew of data speculation while Sections 4 and 5 discuss our soft-
presents a challenge to a CMP because these programs do not typire and hardware support for data speculation and speculative
cally contain large amounts of thread-level parallelism. Even whethreads in detail. We present our results in Section 6. Finally, we
thread-level parallelism exists it is difficult for a compiler to ana-conclude in Section 7.

lyze the data dependencies between potential parallel threads and

guarantee that the threads are indeed parallel. 2 The Hydra CMP
Permission to make digital or hard copies of part or all of this work for Hydra is our design for a single-chip muItiprocessor [4] All spec-
personal or classroom use is granted without fee provided that copies are R . . .
not made or distributed for profit or commercial advantage and that copies ulation support described and evaluated in this paper has been
bear this notice and the full citation on the first page. Copyrights for added to this basic design. The CMP contains 4 MIPS processors
components of this work owned by others than ACM must be honored. !
Abstracting with credit is permitted. To copy otherwise, to republish, to post each with a pair of private data caches, attached to an integrated on-
on servers or to redistribute to lists, requires prior specific permission chip secondary cache using a pair of buses as depicted in Figure 1.

andfor a fee. The processors use data caches with a write-through policy to sim-

| Centralized Bus Arbitration Mechanisms |

CPUO | | CpPU1 | | CPU 2 | | CPU3

T 3 + 1 3 111 3 |1 3

L1inst] L1DataCache& L1inst.| L1 DataCache & L1inst.| L1 DataCache & L1inst.| L1 DataCache&
Cache |Speculation Support] Cache |Speculation Support] Cache |Speculation Support] Cache |Speculation Support

CPU 0 Memory Controller CPU 1 Memory Controller CPU 2 Memory Controller CPU 3 Memory Controller
cache Writes out, Cache Writes out, Cache Writes out, Cache Writes out,
refills invalidates in refills invalidates in refills invalidates in refils invalidates fn

Write-through Bys (64b

I Read/Replace Bus (256b)

Direct /O

Speculation Write Buffers

Rambus Memory Interface 1/0 Bus Interface

I

DRAM Main Memory 1/0 Devices

On-chip L2 Cache

Figure 1. The main datapaths in the Hydra CMP.

plify the implementation of cache coherence. All writes propagatgrained data speculation allows loads to be speculatively executed
through to the write back secondary cache using the dedigdted before these store addresses are known. If a true dependency is
bus In order to ensure coherence, the other processors’ data caclaesually detected once the prior store addresses are known, the mis-
watch this bus — using a second set of cache tags — and invalidatpeculated load and any instructions dependent on it may be dis-
lines to maintain cache coherence. Interprocessor communicationdarded and re-executed. As processor instruction windows get
supported by processors recovering the updated version of the liferger, such speculation becomes more important to allow a greater
from the shared secondary cache. All other on-chip communicatiotegree of out-of-order instruction processing.

among the caches and the external ports, such as data cache refills,

are supported by the cache-line-widad bus Both buses are fully Data speculation mechanisms can also facilitate the parallelization
pipelined to maintain single-cycle occupancy for all accesses. Offef programs for a multiprocessor. Today, programmers or compilers
chip accesses are handled using dedicated main memory and st carefully divide up a sequential program into separate threads
buses. For the applications evaluated in this paper, the bandwidth it are guaranteed to be free of true dependencies through either
these buses is not a performance bottleneck. A summary of the pé&egisters or memory. This is often difficult to ensure, especially for
tinent characteristics of the Hydra CMP memory system appears emory references. Compilers are not able to statically disambigu-
Table 1. ate pointers in languages such as C to determine if they may be
pointing to the same data structures [13]. As a result, existing com-
pilers must assume that dependencies may be present and therefore

Chcache L2CGED Manliemory they generate code conservatively. If a dependency may occur, the
o Separate| & D Shared, on-chip : compiler either cannot divide code into threads or must insert
Configuration SRAM cache pairs ! Off-chip DRAM i . .
for each CPU SRAM cache explicit software synchronization between threads.
Capacity 16KB each 2MB 128 MB
] . ; 32-bits of Rambus
Bus Width &bt connecion o, | 286-bit 162 bus + 64 | (1yning at the full Original Sequential _ _
CPU speed) Threads Speculatively Parallelized Threads
Access Time 1 CPU cycle 5 CPU cycles at least 50 cycles D;‘r'zv'l'o"lg Thread i
Associativity 4-way 4-way N/A hreads read X D;‘Sv{.f‘:g Thread i ?ﬁm %L?illl?
threads
Line Size 32 bytes 32 bytes 4 KB pages el ey VIOLATION —
------ i ssums d -
R Writethrough, no Writeback, allocate on | “ Writeback” B 3¢ re_a * read too early -
o alocate on write writes (virtual memory) w read X e— exwees write X T(: e | IR
real
- = E—— read X FORWARD — To later
e G N/A Inclusion not enforced | Includes all cached read i+ FoRwaRD witex | threads
by L2onL1caches |data read X order occurs —
read X
Table 1. Hydra memory hierarchy characteristics. wite X
. S :l To later
3 Data Speculation

Figure 2. An example of speculative threads with data

Data speculation mechanisms allow instructions from a sequential dependencies.

instruction stream to be reordered, even in the presence of loads and
stores that may be interdependent. Conventional out-of-order uni-

processors can reorder most ALU-type instructions in a RISC pro\[Vith thread-level data speculation, a compiler only needs to divide

cessor using register renaming and dynamic scheduling. Howevét S€duential program into threads. These threads are given sequence
these processors cannot reorder memory access instructions uffmPers corresponding to the order in which they would execute

the addresses have been calculated for il preceding stores. Only>§Auentially, but are actually executed in parallel. The data specula-
this point will it be possible for out-of-order hardware to guarantegio? hardware ensures that true dependencies between memory

that a load will not be dependent upon any preceding stores. FinBCCESSes are always honored, even across processors, by simply
backing up processors that execute a dependent load too early. Fig-

ure 2 shows how speculation hardware can use individual stores msnimum support necessary for speculation, as described in the
synchronization points to detect violations or pass data betweegrevious section, and then all thread control is handled by software
numbered threads. This mechanism allows parallelizing compilenoutines that are automatically added to a program at the beginning
to almost obliviously parallelize programs, since memory depenand end of speculativepochsby a compiler.
dencies do not need to be explicitly grouped into a single thread or
synchronized at compile time. Speculation makes the instructiodVe use a combined hardware/software approach, similar to TLDS
windows in the parallel processors appear to be a single, lard®it with somewhat more hardware support, to divide programs into
instruction window, executing a single thread made up of severdhreads and then to distribute the resulting threads among the pro-
disjoint sections. A compiler may parallelize as aggressively as posessors in the chip multiprocessor. The hardware support is a specu-
sible, only limited by the potential performance gains from parallelation coprocessor which helps execute a set of software
ization. In Section 4 we describe how we create and managgpeculation exception handlers. The extra hardware support
speculative threads in the Hydra CMP. decreases the software overheads relative to the TLDS approach
and our hardware/software approach increases flexibility and
The effective memory behavior desired during speculation is sundecreases hardware overheads relative to the Multiscalar approach.
marized in Table 2 for individual accesses to an address. Writes afénie exception handlers divide applications into parallel threads
forwarded from earlier threads to later ones. Simultaneously, readssing two techniques. First, subroutine calls caufelato occur.
are recorded within each processor so that true dependence viokfterwards, the original processor executes the subroutine, while a
tions can be detected. Forward progress is always maintainatheckpoint of the processor state is handed to another processor so
because one thread will always execute non-speculatively, and #mat it may attempt to execute the code following the subroutine call
will be immune from violations. Thikead processor is therefore speculatively. Second, specially marked loops may have their loop
actually not speculative at all, a characteristic that can be utilized titerations distributed among the processors. Basic compiler support
handle exceptional situations such as calls to the operating systerfor both of these techniques can be achieved without significant
changes to existing compilers.

First: Then: . First: Then: . .
CPUi |cPUi+1| Action CPUi+L| CPUi acich 4.1 Subroutine Threads
R R — R R —
R w Renameini+1 W R Renameini+1
" - F—rT—— - | RAW e 1 Normal Speculative Processor
datafromitoi+1 must restart CPU CPU 0 CPU 1
Forward occurs, but Renameini+1, so
w w then i+1 renames w W later forwarding
and overwrites its from i isignored
copy of the data Tlme
(a) (b)
Table 2. Desired speculative memory behavior.
(a) shows what happens when the two processors access the location in
correct program order (thread i before thread i+1), while (b) shows what
happens when they access the location in reverse order (i+1 before i).
To provide the desired memory behavior, the data speculation hard-
ware must provide: Nonspeculative Execution
1. A method for detecting true memory dependencies, in order to [speculative Execution
determine when a dependency has been violated. |:| Holding speculative state while
. . . waiting to become the head CPU
2. A method for backing up and re-executing speculative loads 9
and any instructions that may be dependent upon them when the - Software Control Overhead

load causes a violation. o
— Interprocessor Communication

3. A method for buffering any data written during a speculative
region of a program so that it may be discarded when a viola-
tion occurs or permanently committed at the right time.

H 1 Processor States (H = head)

Figure 3. Subroutine fork and return.

In Section 5, we describe how we add the memory system suppdﬂs a subroutine called within the A/a routine.

for data speculatlon to the Hydra CMP. The call is intercepted during normal execution and the a thread is sent out
to CPU 1, along with a newly created RPB containing its starting state and

the guess for the return value of B.

The original caller continues by executing the B subroutine, staying the

head processor as this happens.

The two existing speculative architectures take different approachés gﬂneda’;‘:("é‘;'j{egii;egbﬁzfiv‘;ﬁ’yttep gnﬂ;roenif,iett?r?gCtilihssr:pg(c):g:il\ﬁﬁ%r:e;%dii

to flndlng speculatlve threads within an appllcatlon The Multisca- must wait to become the head processor. During both the execution and

lar architecture [11] breaks a program into a sequence of arbltrary the waiting time, its speculation mechanisms watch stores from B to

tasks to be executed, and then allocates tasks in order around a ring ensure that no true dependencies between the threads are violated. The a

of processors with direct register-to-register interconnections. thread is restarted immediately when such a violation is detected.

While the division of a program into tasks is done at compile time4 Upon becoming the head, CPU 1 completes and returns (or restarts and

all dynamic control of the threads is performed by ring manage- re-executes the a thread if the original return value prediction was wrong).

ment hardware at runtime. The TLDS architecture [12], based on a

chip multiprocessor, is quite different. Its hardware provides the

4 Speculative Threads 5

Subroutine speculation is controlled using a linked list of active3. The new buffer is then inserted into the list of active buffers,
threads ordered from least-to-most speculative and maintained by immediately after the current processor’s, as depicted in Figure
the speculation support software. When a thread is created, it is 4(a). This allows the list of active RPBs to act as the active
inserted into this active list. The head processor is always running thread list, since anghild thread created will always be the
the thread at the beginning of the active list, while more speculative next-most-speculative thread. The thread list must be main-
processors try to execute the subsequent three threads from the list. tained in memory for two reasons. First, any thread may be
Speculation is initiated with a fork message that is sent to other pro- assigned to any processor over the course of its lifetime, so it is
cessors when a subroutine call is detected. Figure 3 shows the over- necessary to keep the thread list in a central location that all
all sequence of actions in a typical fork. may access. Second, since there are frequently more threads

than processors, it is convenient to simply leave the RPBs for
When a subroutine call is detected, several steps must occur during these extra threads lying in memory at the end of the active list
the actual forking operation: until a processor can be assigned to them.

1.

The processor allocatesegister passing buffqfRPB) for the 4,
thread it is creating by allocating one from the free buffer list

maintained by the speculation control support software. Since
our design does not incorporate direct interconnections between
the processors, a buffer in memory is necessary to temporarily

The processor finishes by notifying a free processor (or, if no
free processors are available, the most speculative running pro-
cessor will drop its thread and pick up the new one) that it
should load the registers in the newly created RPB and continue
working on the code after the subroutine call.

hold a processor’s registers during the register passing commu-
nication from processor to processor. In addition, since thes€hese steps are currently performed by an exception handler that is
registers may need to be reloaded if a thread is restarted follovexecuted when a subroutine call is detected, so that we could use
ing any sort of speculation violation, it makes sense to allocate @emmercially available compilers to compile our benchmarks.
buffer once that can hold a thread’s starting (or restarting) stat&/hile we have vectored exceptions for speculation that avoid the
throughout the thread’s lifetime. normal OS exception overhead, inlining the forking code would
efinitely be more efficient, since only the live registers would need
across subroutines (9 integer and 12 floating point usin star be saved in the RPB. At the processor receiving the fork, another
dard MIPS software conve?]tions) the currer?t global andgstac ectored exception handler gets a pointer to the new buffer from the
. . P . “active list, reads in the contents of the buffer into its registers, and
g? ;meerssabtrhoitli:n%‘fsol!leqfvglr?]gvg;f eSIIJ:lZ)rrO tl:]ti?e;aélr, wguasgﬁﬂ'ecg?ns_tarts executing the continuation code following the procedure call.
ple repeat last return valuprediétion mec%a%is;n used in [10] "Bue to the overhead inherent in allocating a new buffer and then
. . . " saving, communicating, and loading most of a processors’ registers,
Vv\\ll:rlllg v”;;?%;?&?:ﬁé?G'}Trfcstioirs tggzsigleéit:}igf rte(atﬁ?r?l?rl: \%/ery short subroutines are markatpredictableby the return value
same thing continuously (void functions and functions that onl rediction mechanism the first time they are executed so that they

ill not be considered for speculation on subsequent invocations.
return error values are good examples), or they are completeYVy P q

unpredictable, and therefore should not be selected for speculw
tive execution at all. These unpredictable functions are pruneg
off and marked asnpredictableafter a few mispredictions have
been detected.

2. The new buffer is filled with all registers that may be savec{j

hen a subroutine completes after forking off its continuation
ode, it returns to the speculation support software, which performs
several more steps to complete the forked subroutine:

1. It waits until it becomes the head processor. This is necessary
because the processor must maintain its dependency violation
detection buffers for this thread until after it becomes the head,
since it may be restarted by dependence violations up until this
point.

(a) Fork

Forking
CPU's
registers
written out,

RPB 2.
New
Thread

The actual return value of the subroutine is compared with the
one predicted during the last fork. If a misprediction is detected,
the return value is corrected in the RPB allocated during the last
fork, and then all of the speculative processors are restarted so
that they will execute using the new, correct return value.

The RPB of the current thread is returned to the free list as the
next thread becomes the head.

RPBs of more
speculative
threads

RPBs of less
speculative
threads

RPB
Forking
Thread

RPB
Old “Next”
Thread

—

(b) Loops

All threads rotate forward and become less
speculative when the head completes

The old head processor becomes the most speculative proces-
sor. At this point, it checks to see if there is a fourth RPB that is
not assigned to any processor in the active list. If so, it starts
running the thread associated with that RPB. Otherwise, it is
freed until another fork occurs.

<
«

RPB

i+4

RPB

/After loop|

RPB

i i+l

RPB
Fork from|
i+l

RPB

i+2

RPB

i+3

The head loop buffer is rotated to the end of the loop
when it completes, becoming i+5 in the process

(c) Quickloops 4.2 Loop lteration Threads

Al processors grab an RPB and stay with that
RPB until the loop is complete

A speculative loop is preceded by a check to determine whether or
not it is possible to start a speculative loop. The loop is executed
normally if it is known to have poor speculative performance. How-
ever, if the loop is a good candidate for speculation, a modified ver-
sion of the loop body, transformed into a self-contained function, is
executed repeatedly. Loop iterations are executed on all available
processors. They are distributed among processors so that when

RPB

After loop|

RPB

Loop0

RPB

Loopl

RPB

Loop2

RPB

Loop3

Figure 4. Managing Register Pass Buffers (RPBS).

tem with a very large number of processors could practically con-
sider dividing up the free processors among several different
parallel or nested loops in order to run speculative iterations from
more than one at a time. The second set of control code is faster, but
less flexible. For loops that do not contain subroutines that need to
be forked, thigjuick set of routines allocates a set of four RPBs for
the loop, one per processor, and then locks each processor into an
RPB (Figure 4(c)). The overhead of the control routines associated
with these loops is much lower because it does not have to manipu-
late the active RPB list after every loop iteration to perform RPB
recycling or deal with forks or nested loops inside of the loop,
because these are simply executed inline. While we have not cur-
rently implemented this feature, it would be possible for a compiler
to generate code that could first use the slow but sophisticated loop
control routines to dynamically measure a loop’s contents, includ-
ing that of any inner loops, and then select the quicker routines for
loops that do not need the flexibility of the full loop handler based
on its measurements.

Speculative Processor
CPUO CPU1 CPU2 CPU3

Time

Figure 5. A simple example of a speculatively executed loop.

A possible problem with loop speculation is that it may increase the

1. 1.Aloop is started — all processors respond, and start executing loop iter- t of traffi d the instructi t during the |
ations in the order of their current state. The initiating processor also gets amount o me_mory I’{:_l IC an e Instruction coun uring the OOp_.
an iteration as it completes the A thread. The speculative version of the loop cannot register allocate vari-

2. When the head processor (speculative state 0) completes a loop iteration, ables that are shared across loop iterations, because the data specu-
it notifies the other processors and starts a new loop iteration while its buff- lation mechanisms cannot protect against true dependency
ers are committed to permanent memory. This message causes the spec- yig|ations in registers. A more complex architecture, similar to the
ulative states of the looping processors to shuffle. Each is decremented by . . .

1, except the head, which now becomes the most speculative of the loop- Multiscalar arCh_neCtu_re (11], COl_ﬂd_traf_Jk_ dependenmes betyveen the
ing processors as it starts a new loop iteration. processors’ register files, but this is difficult to implement in hard-

3. When an iteration completes after detecting the end-of-loop condition, it ware without an impact on the processor core’s performance.

sends a termination message out to all of the processors. All other proces-
sors will now be running iterations “beyond the end of the loop” that
shouldn't actually execute, so they are simply cancelled, and are freed to
execute any threads after the end of the loop.

Unlike our L2 memory system, the register files are an integral part
of each processor’s pipeline, and modifications to allow communi-
cation between them would likely decrease each processor’s core

cycle time.

4.3 Thread Size
loop iterationi, running on the head processor, completes, that iter-
ation's results are committed to memory and the processor starterious consideration must be given to the size of the threads

running the next loop iteration that has not yet been allocated togelected using the mechanisms we have described, for the following
processor, usuallit4, becoming the most speculative processor inreasons:

the process. Meanwhile, tlel iteration becomes the head itera-

tion and is allowed to repeat the cycle. This pattern continues untfl Limited buffer size: Since we need to buffer state from a specu-
one of the loop iterations detects a loop terminating condition, and lative region until it commits, threads need to be short enough
notifies the speculation system. When this processor becomes the to avoid filling up the buffer space allocated for data speculation
head, all processors executing loop speculation are cancelled and too often. An occasional full buffer can be handled by simply
execution returns to normal. A simple example of this execution stalling the thread that is producing too much state until it
sequence is depicted in Figure 5. becomes the head processor, when it may continue to execute
while writing directly to memory. However, if this occurs too
often, performance will suffer.

4. The terminating processor picks up the a thread, immediately following the
loop, and completes it.

Two different sets of control code are used for executing loops.
When starting a large loop, in which the forking of subroutines
within a loop is desirable, a circle of RPBs pointing to the loop® True dependencies: Excessively large threads have a higher
body subroutine is inserted into the active thread list when the loop probability of dependencies with later threads, simply because

is started (Figure 4(b)). Subsequently, when a loop iteration com- they issue more loads and stores. With more true dependencies,
pletes on the head thread, its RPB is recycled to the end of the loop, more violations and restarts occur.

as the figure indicates. Aside from the RPB recycling and the fact) .
that fewer registers must be saved and restored when starting a loop R€Start length: A late restart on a large thread will cause much
subroutine, the system works much like it does with procedure More work to be discarded, since a checkpoint of the system
forks. Since the active RPB list works the same at all times, this State is only taken at the beginning of each thread. Shorter
model allows speculative thread forks from within a loop or even a threads result in more frequent checkpoints and thus more effi-
loop within a loop to work correctly. However, a loop within a loop ~ Cl€nt restarts.

is impractical, even it works correctly, because enough loop RPBg
are always inserted into the active list when any loop is started so
that all processors will always be working on the innermost loop or

subroutines inside of it. Hence, RPBs from outer loop iterations

will always be far enough back on the active list that they will never

execute until the inner loop completes. As a result of this process

Overhead: Very small threads are also inefficient, because there
is inevitably some overhead incurred during thread creation and
completion. Programs that are broken up into larger numbers of
threads will waste more time on these overheads.

Sur on-chip bus communication mechanisms between processors
QFbically result in overheads of 10-100 cycles for most speculation

which loop is the best choice for speculative execution. Only a Syssherations. In order to amortize these overheads while still keeping

threads short enough to avoid the long-thread problems, threads génerated by a compiler or by hand, it is possible to turn off the
300-3000 instructions are optimal. speculative support and just execute the threads like a traditional
multiprocessor. This can be done dynamically as the program exe-
Not all loop bodies and subroutines are in this perfect size rangeutes. Speculation can be re-enabled when a speculative region of
Also, many of these possible threads have too many true dependene program is reached. A feature of our speculative thread imple-
cies across loop iterations or with their calling routines to evementation is that it is possible for the operating system to steal one
effectively achieve speedups during speculative execution. With asr more processors from a process while it is executing a specula-
infinite number of procesors, it is possible to attempt to run everyive region. In this case the speculative control mechanisms release
loop iteration and subroutine in parallel. However, many processotsie most speculative processors. These processors can be used to
would be wasted achieving negligible speedups on the nonparallgin other speculative or non-speculative threads from another pro-
routines. Unfortunately, we only have a finite number of processorgess.
As a result, care must be taken to allocate these processors to spec-

ulative threads that are likely to improve performance. 4.7 The Specu'ation Control Coprocessor

There are two heuristics that we use to find and prevent speculati . .
on nonparallel threads: violation counters, to eliminate threads witﬂwﬂe hardware-software interface used to control speculative threads

many dependencies, thread timers, to eliminate threads that are tlgﬂimplemented using the MIPS coprocessor CP2 interface. Our
short or long, and stall timers, to find threads that are stalled tq imple coprocessor has several hardware mechanisms for control-

- ng speculation. A collection of small software control routines is
long. Once nonparallel threads are discovered, we record that thﬁged to operate CP2. These functions are listed in Table 3. As is

fnha(l)iﬁltgir? (;t k?aerdsve:f; ls:ggic?irér:ntailgret?&?:? Cvcti?ollebgv p?og;rk:ﬁen? oted in the table, some are invoked directly by software, while oth-
perform this entirely in software at the’cost of more overhead in the > act as exception handlers_ triggered by hardwarg events or mes-
thread forking routines ages from other processors in the system. CP2 maintains a table of
' exception vectors for speculation events, so these exception han-
. . dling routines can all be started without the overhead of the operat-
4.4 Synchronlzatlon ing system’s normal exception dispatcher. Internally, the
coprocessor uses four identical state machines to track the state of
If a compiler can identify a variable in a speculative region that ighe threads executing on all processors, so that exceptions may be
likely to cause frequent violations, it may put explicit synchroniza-generated or screened correctly depending upon the overall state of
tion into the code, protecting the critical region where the Variabl%e system. Fina”y, the coprocessor contains the timers and predic-
is used, to eliminate the violations caused by those regions. Thign tables used to prevent speculation on nonparallel threads and to
synchronization mechanism is simply a busy-wait loop at the begirpredict return values for speculative procedure continuations.
ning of the critical region that reads a lock variable, using a load
instruction that will not cause violations when a less speculativélany state transitions are initiated by messages sent between pro-
processor updates the lock (in our simulator, the MIPS load lockegkssors during the speculation control routines. These stores are all
instruction is given these semantics during speculation, since it i® a special memory address used only for message passing, using
not needed for normal multiprocessor synchronization while théiormal store instructions. When another processor sees a store to
speculation hardware is active). At the end of the critical region, ehis special address on the write bus, it responds by modifying its
normal store instruction may be used to indicate that the lock is fréaternal state, and/or triggering an exception and starting the appro-
to the next speculative region. priate handler.

It should be noted that unlike traditional MP synchronization, spec Hardware Support for Data Speculation
ulation synchronization is only used to improve performance, and is

not necessary to ensure correct code execution. As a result, it can . dat lati hitect h q | dif
often be avoided for many variables that would traditionally requirg_'€V!0US data Speculalive architectures have proposed several dit-

synchronization. Instead, only the few variables that cause exce rent mechanisms for handling speculative memory accesses. The

sive numbers of violations are targeted for synchronization. Irst was the ARB, proposed along with the Multiscalar processor
[2]. This was simply a data cache shared among all processors that

had additional hardware to track speculative memory references
within the cache. While a reasonable first concept, it requires a
) . .) shared data cache and adds complex control logic to the data cache
If a speculative thread requires operating system services throughygyeline which has the potential to increase load latency and limit
system call or an exception, the thread is stalled until it becomes thgi5 cache bandwidth. More recently, the Multiscalar group has
head processor. At that time, the operating system, which is ng{iroduced the speculative versioning cache [3], a set of separate
compatible with speculative execution, may be safely entered. If 8t caches distributed among the processor cores in the Multisca-
thread violates or is aborted while waiting, the operating systemyr processor that maintain their speculative state within the caches
call or exception is simply discarded. This is critical because SPeClsing a complex and sophisticated writeback cache protocol. Con-
lative th_reads frequently_cause segmentation faults by dereferenci@grrenﬂy, the TLDS researchers have proposed a similar scheme
null pointers or accessing data beyond the end of arrays. Theggé]_ However, they chose to keep their protocol much simpler, at
extraneous segmentation faults must be squashed because they expense of performance-limiting bursts of coherence bus traffic

4.5 Support for Precise Exceptions

would not occur in sequential execution. at the end of every speculative epoch and an inability to forward
data from speculative iterations using normal memory references.
4.6 System Level Issues Instead, they added a special shadow memory for critical values

that require early forwarding between epochs. This places an added
In our implementation, speculative threads can coexist with othdsurden on the compiler to identify the values that need to be for-
speculative and non-speculative threads from the same processvaarded.
from a completely different process. When a point in the execution
of the program is reached where there are explicitly parallel threads

Group Handler Use What it does Overhead (instr.)
Subroutines | Fork Exception, generated upon execution of a jump-to-subroutine | Allocates an RPB, saves necessary processor state into the RPB, and then sends a 70
(JALR) instruction FORK command out to the most speculative (or free) processor.
. . Waits to become the head, commits speculative data, checks the guessed return _ "
Subroutine Completion ﬁilé;e&etzren:grﬁ:::u?r:ﬁ?&:brOullne completes, value from the last fork against the actual one, kills speculative processors if 40 g:#;,,san
necessary, and then continues with a " Start Buffer" command to get a new thread.
Selects one of the first 4 RPBs on the active list, deletes any old children Full: ~60 (loop)
Start Buffer Jumped to by completion commands or an exception generated by this thread during any restarted earlier executions, reads in its or ~75 (fork)
triggered by a FORK or STARTLOOP contents, and begins executing the subroutine or loop thread. If insufficient Short: ~25 (loop)
threads are available, the processor is freed. or ~40 (fork)
. Lo Setsup aring of RPBs for “ slow” loop operation, configuring their buffers B
L 0oops Start Speculative Loop | Called by spec_begin() in origina program code correctly, then sends out a STARTLOOP bus command to other pr s 75
Start Speculative Loop . . P Sets up 4 RPBs for "quick" loop operation, configuring their buffers correctly, -
(quick version) Called by spec_begin_quick() in original program code then sends out a STARTLOOP bus command to other processors. 70
Waits to become the head, commits speculative data, moves its RPB to the end of
the loop, making adjustments to it if it was used for a fork during the loop
End-of-Iteration / Routine returned to after a speculative loop iteration iteration, and claims the next available iteration with a COMPLETE command, or ~45 + short "Start
Terminate completes commits its speculative data, discards all of the RPBs within the entire loop, and Buffer"
kills all other loop iterations with a KILL command before picking up the buffer
following the loop with a " Start Buffer" command.
End—qf—lterallqn / Routine returned to after a speculative loop iteration Same as slow version, except without RPB manipulation and adjustments during 16 (on”EOI) or NAS:
Terminate (quick . X short "Start Buffer
: completes the end of every iteration. .
version) (on terminate)
PN Exception, initiated by a RAW hazard detection in the L1 Causes speculative data to be discarded and the iteration to be restarted, and sends ~30(20ifin
SUppOl’I Violation: Initiate cache speculation logic out aKILL bus command to following CPUs. aquick loop)
Violation: Receive Exception, initiated by KILL bus command Causes speculative data to be discarded and the iteration to be restarted. 8+ .fu“ Sla(t Buffer
(11 if in aquick loop)
Exception, initiated by buffer-management hardware within o o
Hold: Buffer Full each CPU, due to a full L2 buffer or the possible loss of reag- | C245%S the CPU to stop until it becomes the head CPU, when it is dllowed to 15
o - continue non-speculatively, bypassing the full buffer.
bit information due to an L1 replacement
Hold: Excention Exception, initiated in place of a"normal" instruction Causes the CPU to stop until it becomes the head CPU, when it is allowed to 25 + OS time
- EXcep exception or system call trap encountered during speculation | continue non-speculatively with the SYSCALL or instruction exception.

Table 3. A summary of the software handlers required to support speculation

In our implementation, we took advantage of Hydra’s write-through5.1 Data Cache Modifications
data caches and bus system to build a protocol that is easily imple-

mented without impacting the CMP's basic cycle time, is as effigach data cache line tag includes several additional bits to record
cient as the SVC scheme, and only requires simple coherenggte necessary for speculation as shown in Figure 7. The first two
protocols. To add this speculation support, several key hardwaigis zre responsible for modifying the basic cache coherence

elements have been added to the existing Hydra design. A blogtheme that invalidates a data cache line only when a write to that
diagram of these additions, including their interface to the controkne from another processor is seen on the write bus.

coprocessor, is shown in Figure 6. The remainder of this section
describes these additions.

C P U ¢ Interrupts
LOAD/ || Speculation Coprocessor |24 CPY.
STORE
Unit Interrupt
* Screen
A
Data Cache Restart
L2 Buffer Control Logic
Overflow
Control A Hold
A suer Writes & Writes from Bus
Free Commands other CPUs
Signals Commands |H
I il
Buffer Free Bus
Write Bus
Buffer Free
Commands IN Signals OUT
L2 :
Control L2
L2 Buffer Speculation
Controller Buffers

Figure 6. Hydra speculation hardware.

* Modified bit: This bit acts like dirty bit in a writeback cache.
If any changes are written to the line during speculation, this bit
is set. These changes may come from stores by this processor or
because a line is read in that includes speculative data from
active secondary cache buffers. If a thread needs to be restarted
on this processor, then all lines with the modified bit set are
gang-invalidated at once.

® Pre-invalidate bit: This optional bit is set whenever another pro-
cessor writes to the line, but is running a more speculative
thread than this processor. Since writes are only propagated
back to more speculative processors, we are able to safely delay
invalidating the line until a different, more speculative thread is
assigned to this processor. Thus, this bit acts as the opposite of
the modified bit — it invalidates its cache line when the proces-
sor completes a thread. Again, all lines must be designed for
gang-invalidation. If pre-invalidate bits are not included, writes
from more speculative processors must invalidate the line
immediately to ensure correct program execution.

Gang Clear and
Force Invalidation
on Backup Only

T T T
\{Vrinqn»by{-wcﬁd Bi({s L]Modilied Pre-inval LRUlBits

Gang Clear and
Force Invalidation
on Commit Only

Gang Clear on either
Commit or Backup

l { T T T T T I
lReanil-by-Y\lorc{ anl L

Figure 7. Data cache tag bits used for speculation.

The other two sets of bits allow the data cache to detect true depen-
dence violations using the write bus mechanism. They must be Addresses Write Data in from Write Bus
designed to allow gang-clearing of the bits when a speculative i |

region is either restarted or completed.

® Read bits: These bits are set whenever the processor reads from Tail —y
a word within the cache line, unless that word’s written bit is L2 Tag Data Write Mask
set. If a write from a less speculative thread, seen on the write V| 1cAM] | | (L2 cache line) | (by byte)
bus, hits an address in a data cache with a set read bit, then a
true dependence violation has occurred between the two proces-
sors. The data cache then notifies the processor's CP2, initiating
a violation exception. Subsequent stores will not activate the

written bit for this line, since the potential for a violation has Head —»|
been established. v v
Drain writes to L2 cache
® Written bits: To prevent unnecessary violations, this bit or set of after committing the CPU
bits may be added to allow renaming of memory addresses used
by multiple threads in different ways. If a processor writes to an . Y
entire word, then the written bit is set, indicating that this thread From other write. P”O”W@
now has a locally generated version of the address. Subsequent buffers and L2 by byte
loads will not set any read bit(s) for this section of the cache AR’ v
line, and therefore cannot cause violations. Mux the most recent Version/i
of each byte to the read bus

It should be noted that all read bits set during the life of a thread
must be maintained until that thread becomes the head, when it can

no longer needs to detect dependencies. Even if a cache line must Read Data out to Read Bus
be removed from the cache due to a cache conflict, the line may still
cause a speculation violation. Thus, if the data cache attempts to Figure 8. The secondary cache write buffers.

throw out a cache line with read bits set it must instead halt the pro-

cessor until the thread becomes the head or is restarted. This pr@ons of all bytes in the line. This requires priority encoders on each
lem can largely be eliminated by adding a small victim buffer [5] tobyte to select the newest version of each byte from among this
the data cache. This victim buffer only needs to record the addreg§read’s buffer, all buffers from earlier threads that have not yet
of the line and the read bits in order to prevent processor halts ungjtained into the secondary, and the permanent value of the byte
the victim cache is full. To simplify our current implementation, wefrom the secondary cache itself. The composite line is assembled
assume that an infinite-size victim buffer, containing only read bitaind returned to the requesting processor as a single, new, and up-to-

and addresses, is attached to each data cache. date cache line. While this prioritization and byte assembly is rea-
sonably complex, it may be done in parallel with each secondary
5.2 Secondary Cache Buffers cache read — normally a multicycle operation already.

Buffering of data stored by a speculative region to memory is hanlvhen a buffer needs to be drained, the processor sends out a mes-
dled by a set of buffers added between the write bus and the seco@ge to the secondary cache buffer controller and the procedure is
ary cache (L2). During non-speculative execution, writes on thénitiated. Buffers drain out entry-by-entry, only writing the bytes
write bus always write their data directly into the secondary cachddicated in the write mask for that entry. Since the buffers are
During speculation, however, each processor has a secondary caghesically located next to the secondary cache, the buffer draining
buffer assigned to it by the secondary cache buffer controller, usin@ay occur on cycles when the secondary cache is free, without the
a simple command sent over the write bus. This buffer collects aiS€ of any global chip buses. In order to allow execution to continue
writes made by that processor during a particular speculativ@’h”e buffers drain into the secondary, there are more sets of buffers
thread. If the thread is restarted, then the contents of the buffer aife@n processors. Whenever a processor starts a new thread, a fresh
discarded. If the thread completes successfully, then the conterfgffer is allocated to it in order to allow its previous buffer to drain.
are permanently written into the secondary cache. Since threa@¥ly in the very unlikely case that new threads are generated so

may only complete in order, the buffers therefore act as a sort GUiCKly that all of the buffers contain data must new threads be
reorder buffer for memory references. stalled long enough to allow the oldest buffers to drain out.

The buffers, depicted in Figure 8, consist of a set of entries that c&Hffers may fill up during long running threads that write too much

each hold a cache line of data, a line tag, and a byte-by-byte wridate out to memory. If these threads are not restarted, they wait
mask for the line. As writes are made to the buffer, entries are all¢itil they become the head processor, write their buffers into the

cated when data is written to a cache line not present in the buff&€condary cache, and then continue executing normally, writing

Once a line has been allocated, data is buffered in the appropriddéectly to the secondary cache. To detect Ibiler full problem,

location and bits in the line-by-line write mask are set to showgach processor maintains a local copy of the tags for the write
which parts of the line have been modified. buffer it is currently using. This local copy can detect buffer full

conditions while the store that will overflow the buffer is executing.
Data may be forwarded to processors more speculative than the oRlis store then causes an exception, much like a page fault, which
assigned to a particular secondary cache buffer at any time afteratiows the speculation mechanisms to handle the situation.
has been written. When one of these later processors misses in its
data cache, it requests data from the secondary, as in the normal
system. However, it does not just get back data from the secondary
cache. Instead, it receives a line that consists of the most recent ver-

5.3 An Overall View of Speculative Support

suite and the fifth applicationyc, is a UNIX utility. To generate
speculative versions of these applications we use a simple source-

To briefly illustrate how these modifications work together, Figured0-source translator to convert tioe andwhile loops into specu-

9 and 10 show the operation of speculative loads and stores.

4 iteration windows are po: ihlp-I [" 1
[1
f 1
Nonspeculative

“Head” CPU Speculative, earlier CPUs “Me" Speculative, later CPUs
cPU CPU cPU CPU cPU CPU cPU
#i-3 #i-2 #i-1 #i #i+l #i+2 #i+3
e —e—LLQ
Data
I ® | Cache
‘@ le e le |e
[] [] [] [] [] [] []
o | foe] v P [o oo e
Cache

Figure 9. The operation of speculative loads.

A CPU first reads from its data cache. The read bit for the word is set, if the
written bit for the word does not indicate that it is already a local copy.

In the event of an data cache miss, the L2 cache and write buffers are all
checked in parallel. The newest bytes written to a line are pulled in by pri-
ority encoders on each byte, according to the indicated 1-5 priorities (1 =
highest priority, 5 = lowest). This line is then returned to the CPU using the
read bus. The requested word is delivered to the CPU (a), while the line is

lative for andwhile loops. The speculative source code is com-
piled usingcc with -O2 optimization running under SGI IRIX 5.3.
The speculation control software was written in hand-optimized
MIPS assembly language, to minimize the overhead of these criti-
cal routines as much as possible.

Our simulator models a cycle-accurate MIPS multiprocessor built
from 4 simple pipelined processors, attached to a memory system
that realistically models the memory delays and contention in the
Hydra CMP. User code within C library functions is run under sim-
ulation, but actual operating system calls are handled by tempo-
rarily dropping from the simulator to the real machine for the
duration of the call.

We present the performance results as the speedup of a four proces-
sor CMP executing a speculative application compared to one of
the CMP’s processors executing an optimized sequential version of
the same application. The rationale for this way of presenting the
performance results is that we are interested in the performance
benefits of adding speculation to an existing CMP rather than a
comparison of a speculative CMP with an alternative architecture.

delivered to the data cache (b). The read bits for the word just read and the Unipr ocessor Speculative % increase in
modified bits are set. A possible optimization would be to not set the modi- Benchmark | Speedup| Data Cache Data Cache L oad
fied bit if the line only came from the L2 cache, without any speculative Miss Rate (%) | Miss Rate (%)
additions from the buffers, but we chose not to implement this.
we 0.62 061 18.64 548.5
wc (w/ delay) 0.66 13.47 322.6
4 iteration window‘s are po ihlra-I [|] 1 m8sksim 1.04 054 11.34 282.1
I 1
N?,_",:ssf‘g;‘ge Speculative, earlier CPUs “Me" Speculative, later CPUs compress 1.00 435 1531 6.4
CPU CPU CPU CPU CPU CPU CPU compress (w/
#i-3 #i-2 #i-1 #i #i+1 #i+2 #i+3 synchronization) 109 1427 -10.9
) —l (1] P3) ijpeg 151 0.69 576 63.4
Writ Dat;
BLISe ===~ iaidations & Cail?e A Bievalidaiond ™77 1 vortex 0.58 159 13.06 383
RAW Detection

L2 [1 [1 [1 [1 [1 [1 [1
Cache ||

Figure 10. The operation of speculative stores.

On a store, each CPU writes to its data cache, if the line is present there,
and its assigned write buffer, using the write bus. The modified bit of any
hit lines in the data cache are set. If the read bit of the word stored to is
cleared, then the written bit is set to indicate that this word is now a local
copy. The data from the store is recorded in the store buffer in a newly-allo-
cated line or included in an existing line.

Earlier CPUs invalidate data cache lines directly, if they write to a cache
line present in the data cache. Also, these writes cause dependence
checks. If they write to a location in the data cache or victim buffer with the
read bit set, a true dependence violation has been detected, and the pro-
cessor is forced to restart.

Later CPUs just cause the pre-invalidate bits in our data cache lines to be
set, so that the lines will be invalidated when a new thread is allocated to
this CPU.

When the contents of a write buffer are no longer speculative, the buffer is
allowed to drain out into the L2 cache on free cycles.

6 Performance Evaluation

Table 4. Benchmark performance summary.

Our results for the five benchmarks are summarized in Table 4 and
Figure 11. The table gives speedup values from key benchmarks
that we tested. The table also lists some important figures about the
memory system: average miss rates for the data caches for both the
non-speculative and speculative cases, and the percentage increase
in load traffic when moving from a non-speculative to speculative
mode of operation. The larger miss rates during speculation reflect
the fact that interprocessor communication during speculation
results in invalidations followed by data cache misses that then
recover the new data from the L2 cache. The increased number of
loads is due to a combination of running speculative control han-
dlers, superfluous speculative memory accesses performed by spec-
ulative threads that are subsequently restarted, and the fact that
speculative loops cannot register allocate actively communicated
variables, increasing the number of memory reference instructions
that must be generated to do the same work. Howemipress

was an anomaly, since the code that was generated by our compiler
for the entire uniprocessmompress() function required more
register saving across function calls than the small section of code
within our subroutine-packaged version of the loop body used by
the speculative loop mechanism.

For our performance evaluation we use five representative integer
applications written in C that are not parallelizable using conven-
tional compiler technology. Four of the applicationsmpress |,
ma88ksim, ijpeg , vortex , are from the SPEC95 benchmark

6.1 Benchmark Analysis

100+ S — -
1 Idle

90 o S

805 [] overhead
g 70; [0 wait/discard
c 3
2 60 [0 Runrdiscard
T 60
S]
% 50] wait/used
s 40,E Il Run/used
g "7
S 30
o]

20

10}

0 I T T

0o 1 2 3 0o 1 2 3 o 1 2 3 0o 1 2 3
wc m88ksim compress ijpeg vortex

Figure 11. Processor utilization breakdown.

Our results fromwc demonstrate that the software control over-sor communication had a minimal impact on the overall execution
heads associated with our implementaion of speculation catime. Instead, some ah88ksim’s global variables are read and
severely limit speculation performance. The corevofs a single written at locations in the loop, some inside subroutines, that
loop that takes an average of only 27 cycles per iteration with fullyseverely curtail the amount of parallelism that may be exploited.
optimized uniprocessor code, other than the occasional iteratiofshe first speculative processor can use about 15% of its time use-
when the call togetchar() within the loop must request more fully by overlapping the beginning of each loop iteration with the
characters from the OS. Even using the quick loop primitives, thend of the previous one, but most of this time is simply spent over-
speculation control software requires approximately 40% of theoming the communication inefficiencies, limiting speedup to
time on all of the processors just to handle the frequent iteratiof.5%. Meanwhile, the second and third processors contribute noth-
completions (on the head and #3 processor) and dependency violag, as they must work on iterations two or more ahead that cannot
tions (on processors 1-3), since the 10-15 instruction overhead oferlap with the head iteration at all due to true dependencies. Pre-
these operations is about half of the entire loop time! Even with thigious work has shown that an aggressive compiler, designed to
overhead, the parallelism that speculation is able to expose in timeove loads associated with receiving interprocessor communica-
loop still allows about 40% of the system’s processor time to workion as late as possible in each iteration and sending communicating
on the actual code. If all of this time could be exploited producwrites as early as possible, might allow more speedup by overlap-
tively, a speedup of 1.6 could be obtained. However, an entire prging iterations more and allowing much of the discarded time to be
cessor’s worth of performance is lost to two factors related withused effectively [12, 10], but such aggressive compiler optimiza-
interprocessor communication. Firstg has two critical loop car- tions are beyond the scope of this work.
ried-dependencies that cannot be avoided — the buffer pointer in
thegetchar() library call, and the locah a wordvariable that is In betweerwc andm88ksim is compress . The core otompress
used to count words. While the uniprocessor hits in its data cachi fairly small loop — about 140 cycles per iteration — but large
when accessing these variables, a speculative processor must dewteugh so that the speculation and communication overheads,
ten or more cycles to handling the data cache misses associattlile significant, do not overwhelm its execution time. Even when
with this communication. Additionally, as noted previously, thiswe left a critical loop-carried variable alone, performance was
communication forces the compiler to insert loads and stores tessentially equal to the uniprocessor version. However, since this
move the values to and from memory during every iteration to facilsingle variable was such a bottleneck we were able to successfully
itate communication, preventing the register allocation of thesgut a synchronization point (described in Section 4.4) around it, a
commonly-used variables that may be used in the uniprocesssimple transformation that a compiler should be able to perform. By
code. The combined effect of these two communication-relate@xchanging some time spent busy-waiting at the synchronization
inefficiencies consumed a processor’s worth of execution time opoint for the longer violation-and-restart cycles that would other-
this small loop. Due to the critical nature of these memory deperwise be necessary we were able to increase iteration pipelining and
dencies, we also discovered that it was possible to spegdsim- achieve a 9% performance boost with this simple addition.
ply by putting a delay loop at the end of each iteration. The small) o o
delay incurred by the loop caused the iterations to pipeline morPeg is an application with significant amounts of loop-level par-
effectively, avoiding more of the overhead associated with viola2llelism. Using our straightforward loop transformations, we were
tions at the expense of busy-waiting in the delay loop. able to convert most of the loopsipeg into speculative loops

that executed on all four processors. There were still occasional
The loop inm88ksim is over two orders of magnitude larger, run- dependencies between loop iterations, but these did not signifi-
ning for about 5000 cycles and executing an average of 4500antly impact performance. Almost all of the discarded execution
dynamic instructions during each iteration. With such a long loopyas the result of subroutine forks in the unparallelizable code
the overhead associated with speculation control and inter-proce@nostly in the Huffman encoding step of compression) between the

loops. These portions of the program are executed in a manner vahile our results indicate shortcomings in the software-based con-
similar tovortex , described below. This benchmark clearly indi- trol system, the memory buffering system described in Section 5
cates that our loop speculation mechanisms are able to exploit paverked very well. We found that the memory system added very lit-
allelism in code when that parallelism exists, even withouttle latency beyond the basic L2 cache hit time required after every
extensive compiler optimizations. With aggressive optimizationscommunication invalidation, since it was originally designed to
these results should be even betteijpag is currently written so handle the loads of large multiprocessor FP applications. We deter-
that a fairly large amount of the existing parallelism is oftenmined that the optional pre-invalidation bits only help improve per-
obscured by the existing program flow, especially during the decodermance by 1-2%, but the hardware overhead necessary to add
ing stage of the application. these bits is so small that their inclusion in the final design still
makes sense. On the other hand, the write bits proved to be essen-
Finally, our results orortex indicate that subroutine parallelism tial, as all of our simulations done without them resulted in the use-
cannot be effectively utilized by our simulator due to control soft-ful work done by the speculative processors dropping to nearly zero
ware overhead and a lack of parallelism between the code in sulpr most cases due to false violations on WAW hazards.
routines and the continuation code following them. Our sitgsie
value return value prediction mechanism was able to obtain d&igure 12 shows the numbers of 64B L2 buffers filled during each
96.6% successful prediction accuracy when speculating on th&iccessful speculative thread. The results clearly indicate that a
pseudo-OORortex code, thanks to the large number of functionsbuffer of 24-32 lines (1.5 KB — 2 KB) per processor is sufficient to
that return nothing or rarely-raised error flags. However, the sevelgndle even fairly large loop iterations or subroutines. Even the
misprediction penalty for the remaining 3.4% of the predictions —m88ksim loop iterations would have fit in a 21-line buffer. A small
complete flushing of the system’s speculative state — combinedumber of the subroutines speculated orvdriex and ijpeg
with frequent memory dependence violations originating from thaequired more buffer space, but these routines were infrequent
side effects of the functions made parallelism virtually impossibleenough that simply dumping their store buffer state into the L2
to find. Most of the speculative processors spend their time waitingache and then completing the iteration non-speculatively after
to become the head, since the wide variety of subroutines run in ditecoming the head processor would probably have little impact on
ferent threads leads to load imbalance. Each time a long subroutiperformance, as most of these routines would be running on the
becomes the head, three short ones are typically stuck waiting ¢read processor by the time they filled up a 2 KB buffer anyway.
the three speculative processors. Increasing the amount of parallel-
ism exploitable would require a very sophisticated compiler thafrhese results indicate that the basic Hydra memory system lends
performed interprocedural optimizations to increase the distandéself well to speculative operation. Allowing for a fifth 2 KB buffer,
between loads and stores that might be communicated between p&g- that one is free to drain while the other four accept references
cessors running different subroutines in parallel. It might also b&om processors, the system requires only about 13KB of extra on-
forced to break up longer subroutines into smaller parts to helghip memory — smaller than one of the eight existing data caches.
solve load balancing problems. It should also be noted that thieven allowing for a fair amount of control logic overhead, it seems
overhead associated with software control of speculation is excepeasonable to believe that the hardware we propose would not be
tionally high becauseortex is parallelized only using speculative larger than a pair of the existing data caches, which is a small frac-
procedure continuation, which must use the full subroutine contrdion of the total die area.
protocol instead of the low-overhead looping protocols. As a result .
the overhead is comparable to that associated with fairly small Summary and Conclusions
loops likewc or compress even though the subroutines are gener-

ally much larger than the loops in those benchmarks, since smalje have demonstrated that by judicious use of hardware and soft-
subroutines are simply pruned off and avoided by our speculatiMgare mechanisms it is possible to add data speculation capability to
thread selection mechanisms. a CMP. Our results indicate that a data speculation system similar to

ours can extract “hidden” parallelism from loops in uniprocessor
6.2 Memory Results code. It does this by allowing compilersdbliviously parallelize

loops that cannot be fully analyzed for dependencies at compile

time due to problems such as C pointer disambiguation. If there is

100— R parallelism, as_orijpeg , the ap_plication can speed up signifi-

cantly. If there is not, as am88ksim, the application still works,
even if speculation provides no benefit. An optimizing compiler
designed to arrange loads and stores to optimize communicated
dependencies as much as possible among speculative threads might
help this further [12]. However, our mechanisms to extract non-
loop parallelism were hindered by the high software overhead of
the reasonably complex control code, the load imbalance caused by
running a mix of subroutines of varying sizes, and frequent memory
dependencies caused by the side effects of subroutines. We feel that
compress the results obtained using one particular speculation implementa-
masksim tion are not sufficient to condemn the concept of subroutine contin-
uation speculation, especially since we lacked special compiler
support. However, our results clearly indicate that software control
of speculation only makes sense if the control protocols are fairly
simple, such as our “quick” loops, to avoid slowdowns when specu-
lative code lacks parallelism and the speculative overhead is there-
fore wasted. Instead, more complex thread-generation and control
algorithms clearly demand more sophisticated hardware support,
such as that included in the Multiscalar architecture [11].

ijpeg

vortex

Fraction of Speculative Threads (%)
[42]
T

IR

wc

0 -~ B Cacacmm T T T T
0 4 8 12 16 20 24 28 >32
64 B Cache Lines

Figure 12. Speculative store buffer size requirements.

Our results clearly indicate that it does not make sense to design a
CMP just to take advantage of speculative execution. The primar]
reasons for switching to a CMP are technology issues, its parall
programming performance, and its multiprogramming perfor-
mance, as noted in [8]. However, speculation does not require the
addition of a large amount of hardware to an existing CMP, so the
cost-to-benefit ratio is reasonable enough to consider including I%]
for the applications in which it proves helpful. As shown in [8], the
individual processors in a CMP will typically be slower than a con-
ventional wide superscalar processor of equal area while runniu.g
sequential applications. Since the results in that paper indicated t ﬂ
a single, large superscalar processor would just be moderately
faster than one of the processors in a CMP on these applications,
speculation may allow a CMP to provide competitive performance
on programs that have parallelism that cannot be extracted with[8
conventional parallelizing compiler. Optimizing compilers
designed to generate code specifically for a speculative CMP might
allow an even larger number of programs to benefit [10, 12]. Thus,
speculation may help bridge the gap between the performance of
CMPs and superscalar architectures on applications that a parall
izing compiler cannot handle. Also, the ability to flexibly deactivate
speculation on processors is an advantage that should not be over-
looked. When speculation proves to be unproductive, or if a truly
parallel section of code is encountered, a CMP with speculation can
quickly transform into a conventional SMP to run a parallel or mul
tiprogramming workload with speedups that can greatly exceed
those obtained only by exploiting parallelism within a thread, a fea-
ture that does not exist on conventional processors. 1]
Considering our previous results from [8], it is clear that in the near
future, a superscalar architecture is the best way to extract fine-
grained uniprocessor parallelism from C integer program codes,
given a certain amount of die area. However, it should be noted thEit?2]
the fine-grained threaded parallelism extracted by data speculation
is orthogonal to the instruction-level parallelism extracted by super-
scalar ILP mechanisms. Thus, when it is possible to implement sev-
eral wide-issue superscalar processors on a die together as a CMP,
but impractical to simply make a larger single processor, a specul§t3]
tion mechanism similar to the one we propose might become a
much more attractive method to extract additional performance
from uniprocessor codes.

Acknowledgments

The authors wish to acknowledge J. Oplinger, D. Heine and M.
Lam for discussions that led to many of the ideas that appear in this
paper. This work was supported by DARPA contract DABT63-95-
C-0089.

References
[1] M. Franklin and G. S. Sohi, “The expandable split window
paradigm for exploiting fine-grain parallelisnPtoceedings
of the 19th Annual International Symposium on Computer
Architecture pp. 58-67, Gold Coast, Australia, May 1992.

M. Franklin and G. Sohi, “ARB: A hardware mechanism for
dynamic reordering of memory references,|EEE
Transactions on Computengol. 45, no. 5, pp. 552-571, May
1996.

S. Gopal, T. N. Vijaykumar, J. E. Smith, and G. S. Sohi,
“Speculative versioning cacheProceedings of the Fourth
International Symposium on High-Performance Computer
Architecture (HPCA-4)Las Vegas, NV, February 1998.

L. Hammond and K. OlukoturConsiderations in the Design
of Hydra: a Multiprocessor-on-a-Chip Microarchitectyre
Stanford University Technical Report No. CSL-TR-98-749,

(2]

(3]

[4]

Stanford University, February 1998.

N. P. Jouppi, “Improving direct-mapped cache performance
by the addition of a small fully-associative cache and prefetch
buffers,” Proceedings of the 17th Annual International
Symposium of Computer Architectupp. 364-373, Seattle,
WA, June 1990.

T. Knight, “An architecture for mostly functional languages,”
Proceedings of the ACM Lisp and Functional Programming
Conference, pp. 500-519, August 1996.

M. S. Lam and R. P. Wilson, “Limits of control flow on
parallelism,” Proceedings of the 19th Annual International
Symposium on Computer Architecturep. 46-57, Gold
Coast, Australia, May 1992.

K. Olukotun, K. Chang, L. Hammond, B. Nayfeh, and K.
Wilson, “The case for a single chip multiprocessor,”
Proceedings of the 7th Int. Conf. for Architectural Support for
Programming Languages and Operating Systems (ASPLOS-
VII), pp. 2-11, Cambridge, MA 1996.

J. Oplinger, D. Heine, S.-W. Liao, B. A. Nayfeh, M. S. Lam,
and K. Olukotun,Software and Hardware for Exploiting
Speculative Parallelism in MultiprocessprsComputer
Systems Laboratory Technical Report CSL-TR-97-715,
Stanford University, February 1997.

] J. Oplinger, D. Heine, M. Lam, and K. Olukotum Search of

Speculative Thread-Level ParallelisiBtanford University,
Computer Systems Laboratory Technical Report CSL-TR-98-
765, July 1998.

G. Sohi, S. Breach, and T. Vijaykumar, “Multiscalar
processors,’Proceedings of the 22nd Annual International
Symposium on Computer Architectupp. 414425, Ligure,
Italy, June 1995

J. G. Steffan and T. Mowry, “The potential for using thread-
level data speculation to facilitate automatic parallelization,”
Proceedings of the Fourth International Symposium on High-
Performance Computer Architecture (HPCA-ps Vegas,
NV, February 1998.

R. Wilson and M. Lam, “Efficient context-sensitive pointer
analysis for C programsProceedings of Prog. Lang. Design
and Implementaiarpp. 1-12, , June, 1995.

