Design Space Exploration
- and Its Application to Computer Hardware Engineering -

Luigi Nardi, Ph.D.
Stanford University
@Google, July 30, 2019
Main Papers Behind This Talk

Outline

1. Design Space Exploration
 - Motivation Example
 - Problem Setting
 - Important Features
 - Taxonomy
2. The HyperMapper Framework
 - Pareto and Hypervolumes
 - Prior Distribution
 - Pareto-based Active Learning
3. Experimental Results
The Spatial Compiler

- Spatial IR
- Control Inference
- Control Scheduling
- Access Pattern Analysis
- Mem. Banking/Buffering
- Area/Runtime Analysis
- [Optional] Design Tuning
- Pipeline Unrolling
- Pipeline Retiming
- Host Resource Allocation
- Control Signal Inference
- Chisel Code Generation

Legend

- Intermediate Representation
- Design Parameters
- IR Transformation
- IR Analysis
- Code Generation

- Goal of Spatial [Koeplinger, et al.]: design of application accelerators
- On reconfigurable architectures FPGAs and CGRAs
- Spatial compiler lowers user programs into synthesizable Chisel [Bachrach, et al.]

• Goal of Spatial [Koeplinger, et al.]: design of application accelerators
• On reconfigurable architectures FPGAs and CGRAs
• Spatial compiler lowers user programs into synthesizable Chisel [Bachrach, et al.]

• Goal of Spatial [Koeplinger, et al.]: design of application accelerators
• On reconfigurable architectures FPGAs and CGRAs
• Spatial compiler lowers user programs into synthesizable Chisel [Bachrach, et al.]

Goal of Spatial [Koeplinger, et al.]: design of application accelerators
On reconfigurable architectures FPGAs and CGRAs
Spatial compiler lowers user programs into synthesizable Chisel [Bachrach, et al.]

The Spatial Compiler

Unrolls loops, retimes pipelines, and performs on-chip memory layout. The optimizations are computed based on the analyses of the previous phase.

• Goal of Spatial [Koeplinger, et al.]: design of application accelerators
• On reconfigurable architectures FPGAs and CGRAs
• Spatial compiler lowers user programs into synthesizable Chisel [Bachrach, et al.]

The Spatial Compiler

- Spatial IR
- User Parameters
- Control Inference
- Control Scheduling
- Access Pattern Analysis
- Mem. Banking/Buffering
- Area/Runtime Analysis
- [Optional] Design Tuning
- Pipeline Unrolling
- Pipeline Retiming
- Host Resource Allocation
- Control Signal Inference
- Chisel Code Generation

Generates a Chisel design which can be synthesized and run on the target FPGA

Legend

- Intermediate Representation
- Design Parameters
- IR Transformation
- IR Analysis
- Code Generation

- Goal of Spatial [Koeplinger, et al.]: design of application accelerators
- On reconfigurable architectures FPGAs and CGRAs
- Spatial compiler lowers user programs into synthesizable Chisel [Bachrach, et al.]

• Goal of Spatial [Koeplinger, et al.]: design of application accelerators
• On reconfigurable architectures FPGAs and CGRAs
• Spatial compiler lowers user programs into synthesizable Chisel [Bachrach, et al.]

Two objectives:
1. Minimize clock cycles (runtime)
2. Minimize FPGA logic utilization
 - Useful for fitting multiple applications
 - Proxy for energy consumption

One constraint: design must fit in the chip
Motivation - Mono-objective

Benchmark: SLAMBench 1.0 runtime response surface is: non-linear, multi-modal and non-smooth
Derivative-Free Optimization (DFO)
3-parameters and 2-objective Pictorial

Input space
(a.k.a. search or design space)

Derivatives are unavailable: e.g., categorical variables
Derivative-Free Optimization (DFO)
3-parameters and 2-objective Pictorial

Input space
(a.k.a. search or design space)

Output space
(a.k.a. objective space)

Derivatives are unavailable: e.g., categorical variables
Derivative-Free Optimization (DFO)
3-parameters and 2-objective Pictorial

Input space
(a.k.a. search or design space)

Output space
(a.k.a. objective space)

Derivatives are unavailable: e.g., categorical variables
Derivative-Free Optimization (DFO)
3-parameters and 2-objective Pictorial

Input space
(a.k.a. search or design space)

Output space
(a.k.a. objective space)

Derivatives are unavailable: e.g., categorical variables
Derivative-Free Optimization (DFO)
3-parameters and 2-objective Pictorial

Derivatives are unavailable: e.g., categorical variables
Derivative-Free Optimization (DFO)
3-parameters and 2-objective Pictorial

Input space
(a.k.a. search or design space)

Output space
(a.k.a. objective space)

Derivatives are unavailable: e.g., categorical variables
Derivative-Free Optimization (DFO)
3-parameters and 2-objective Pictorial

Input space
(a.k.a. search or design space)

Output space
(a.k.a. objective space)

Derivatives are unavailable: e.g., categorical variables
Derivative-Free Optimization (DFO)
3-parameters and 2-objective Pictorial

Input space
(a.k.a. search or design space)

Output space
(a.k.a. objective space)

Derivatives are unavailable: e.g., categorical variables
Practical DSE: Important Features

1. Real, integer, ordinal and categorical variables (RIOC var.)
 - Example: tile size is an ordinal, parallelism is a categorical
Practical DSE: Important Features

1. Real, integer, ordinal and categorical variables (RIOC var.)
 - **Example**: tile size is an ordinal, parallelism is a categorical

2. User prior knowledge in the search (Prior)
 - **Example**: # threads on a CPU with 4 cores? Gaussian-shaped around 4
Practical DSE: Important Features

1. Real, integer, ordinal and categorical variables (RIOC var.)
 • **Example**: tile size is an ordinal, parallelism is a categorical

2. User prior knowledge in the search (Prior)
 • **Example**: # threads on a CPU with 4 cores? Gaussian-shaped around 4

3. Unknown feasibility constraints (Constr.)
 • **Example**: does a design fit in the FPGA?
Practical DSE: Important Features

1. Real, integer, ordinal and categorical variables (RIOC var.)
 - Example: tile size is an ordinal, parallelism is a categorical

2. User prior knowledge in the search (Prior)
 - Example: # threads on a CPU with 4 cores? Gaussian-shaped around 4

3. Unknown feasibility constraints (Constr.)
 - Example: does a design fit in the FPGA?

4. Multi-objective optimization (Multi)
 - Example: trade-off runtime and area
DFO Tools Taxonomy

None of the tools available support all these DSE features.

We introduce a new framework dubbed **HyperMapper**

<table>
<thead>
<tr>
<th>Name</th>
<th>Multi</th>
<th>RIOC var.</th>
<th>Constr.</th>
<th>Prior</th>
</tr>
</thead>
<tbody>
<tr>
<td>GpyOpt</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>OpenTuner</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>SURF</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>SMAC</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Spearmint</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Hyperopt</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Hyperband</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>GPflowOpt</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>cBO</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>BOHB</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>HyperMapper</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Outline

1. Design Space Exploration
 - Motivation Example
 - Problem Setting
 - Important Features
 - Taxonomy

2. The HyperMapper Framework
 - Pareto and Hypervolumes
 - Prior Distribution
 - Pareto-based Active Learning

3. Experimental Results
Multi-Objective Goal: Pareto Front

Feasible Samples
Infeasible Samples
— Pareto Front

Objective 1
Objective 2
Obj 2 Threshold
Obj 1 Threshold
HyperVolume Indicator (HVI)

- HVI is a hypervolume
 - with respect to a reference
- It is always a scalar
 - even with multiple objectives
- Used to compare 2 Paretos
- The lower the better: \(\text{HVI}_{\text{total}} - \text{HVI}_i \)
Injecting Prior Knowledge in the DSE

- Need a probability distribution that:
 1. Has a finite domain
 2. Can flexibly model shapes including:
- Beta distribution - parameters alpha and beta
- In addition, need of a discrete distribution for categorical variables

PDF given by:

\[f(x|\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1} \]

for \(x \in [0, 1] \) and \(\alpha, \beta > 0 \), where \(\Gamma \) is the Gamma function.
Surrogate Model

• Predicts an outcome given an input x
Surrogate Model

• Predicts an outcome given an input x

• One surrogate model per objective
 • Random forests (RF) for regression
Surrogate Model

• Predicts an outcome given an input x
• One surrogate model per objective
 • Random forests (RF) for regression
• One surrogate model per feasibility constraint
 • Random forests for classification
Surrogate Model

• Predicts an outcome given an input x
• One surrogate model per objective
 • Random forests (RF) for regression
• One surrogate model per feasibility constraint
 • Random forests for classification
• Intuition of why RF is a good model:
 • Good at non-linearity, multi-modality and non-smoothness
Surrogate Model

• Predicts an outcome given an input x

• One surrogate model per objective
 • Random forests (RF) for regression

• One surrogate model per feasibility constraint
 • Random forests for classification

• Intuition of why RF is a good model:
 • Good at non-linearity, multi-modality and non-smoothness

• Has not to be perfect (interested in optima not the best model)
 • Coefficient of determination (R^2) is the wrong indicator of success
The HyperMapper Framework

Input → Warm-up → Processing → Output

Active Learning

Search Space Declaration → Warm-up Sampling → Machine Learning

Prior

Random or Latin Hypercube Sampling

Surrogate Objectives → Surrogate Feasibility Constraints

Objective 1

Obj 1 Constraint

Obj q Constraint

Run Predicted Pareto

Predict Feasible Pareto

Pareto Front

Run Predicted Pareto
Outline

1. Design Space Exploration
 - Motivation Example
 - Problem Setting
 - Important Features
 - Taxonomy
2. The HyperMapper Framework
 - Pareto and Hypervolumes
 - Prior Distribution
 - Pareto-based Active Learning
3. Experimental Results
Spatial Search Spaces (Optimization Knobs)

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Variables</th>
<th>Space Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>BlackScholes</td>
<td>4</td>
<td>7.68×10^4</td>
</tr>
<tr>
<td>K-Means</td>
<td>6</td>
<td>1.04×10^6</td>
</tr>
<tr>
<td>OuterProduct</td>
<td>5</td>
<td>1.66×10^7</td>
</tr>
<tr>
<td>DotProduct</td>
<td>5</td>
<td>1.18×10^8</td>
</tr>
<tr>
<td>GEMM</td>
<td>7</td>
<td>2.62×10^8</td>
</tr>
<tr>
<td>TPC-H Q6</td>
<td>5</td>
<td>3.54×10^9</td>
</tr>
<tr>
<td>GDA</td>
<td>9</td>
<td>2.40×10^{11}</td>
</tr>
</tbody>
</table>

Input
Compiler automatically provides params:
- Tile size (ordinal)
- Inner and outer loop pipelining (ordinal)
- Meta-pipe (categorical)
- Unrolling factor (ordinal)
- Memory banking (ordinal)
- Parallelism (categorical)

Output
Compiler evaluation provides:
- Clock cycles (runtime): objective 1
- FPGA logic utilization: objective 2
- Feasibility constraint:
 - true if design fits in the chip
Feasibility Constraint Model Performance

Valid and invalid mean that a design does or does not fit in the FPGA.
Feasibility Constraint Model Performance

Valid and invalid mean that a design does or does not fit in the FPGA.
Feasibility Constraint Model Performance

Valid and invalid mean that a design does or does not fit in the FPGA using the model for the feasibility constraint.

Valid and invalid mean that a design does or does not fit in the FPGA.
Feasibility Constraint Model Performance

Valid and invalid mean that a design does or does not fit in the FPGA

About 2x in Cycles,
10% difference in Logic

GDA Benchmark
Feasibility Constraint Model Performance

Valid and invalid mean that a design does or does not fit in the FPGA.
3 small benchmarks: compute real Pareto

- Real Pareto is exhaustive search
- Exhaustive: 6 to 12 hours on 16 cores
- Approximated Pareto is HyperMapper
HVI Cycles/Logic Utilization

- Hypervolume indicator (HVI): scalar to compare Paretos
- Baseline is a pruning (based on heuristics) and 100K random sampling
Conclusion and Future Work

• **Goal**: HyperMapper is a multi-objective optimization framework

• **Demonstrated on**: hardware design, CV applications and robotics

• **HyperMapper provides Intelligence Augmentation (IA):**
 - White-box surrogate model: easy to understand and interpret
 - Prior: non-blind search - grey-box optimization approach

• **Future:**
 - Use of prior knowledge in the multi-objective case
 - For the moment only used in the DoE warm-up phase
 - Application of HyperMapper to the popular Halide CV language
 - Support other Black-box optimization algorithms
 - Support multi-fidelities to increase efficiency on DNNs and CV
 - Support batch evaluation for when a cluster is available
Info on HyperMapper

- Join HyperMapper on **Slack**: hypermapper.slack.com
- **Tutorials**: to come
- **Repo**: https://github.com/luinardi/hypermapper
- **Wiki**: https://github.com/luinardi/hypermapper/wiki

Early adopters:

- Microsoft (DBMS)
- Stanford (hardware design)
- UCSD (Spector benchmarks)
- UT Austin (Capri approximate computing)
- ICL (computer vision and robotics)
- Etc.
Demo

HyperMapper