PERVASIE ,
rRALELSH RS
Y s |

Efficient Parallel Graph Exploration on
Multi-Core CPU and GPU

Pervasive Parallelism Laboratory
Stanford University

Sungpack Hong, Tayo Oguntebi,
and Kunle Olukotun

Graph and its Applications

= Graph
= Fundamental data structure
= G = (N,E): Arbitrary relationship (E) between data

entities (N)

= Wide range of Applications
= Scheduling task graphs
= PDE (Partial Differential Equation) solver on mesh
» Artificial Intelligence — Bayesian network
s Bioinformatics — molecular interaction grap
= Social network analysis
= Web graphs
s Graph database - schema-less data managemeént

Performance Issues

m Single-core machines showed limited performance
for large graph analysis problems

= A lot of random memory accesses
+ Data does not fit in cache
= Performance is bound to memory latency

= Conventional hardware units (e.g. floating point,
branch predictors, out-of-order) do not help much

> Use parallelism to accelerate graph analysis

= Plenty of data-parallelism in large graph instances
« Latency bound = Bandwidth bound

= Exploit recent proliferation of parallel computers:
Multi-core CPU and GPU

Graph Exploration

m Breadth first search (BFS)

= A systematic way to traverse the graph
= A building block for many other algorithms

« S-t connectivity, betweeness centrality, connected
component, community detection, max-flow ...

= Can be parallelized (c.f. depth first search)
=« More about this in the next slide
= Many previous researches on implementation

=« For various architectures: Cluster, Cell, Cray, Multi-
core/SMP, GPU, ...

= Preferred as parallel benchmark
= See graph500.org

Parallel BFS Algorithm

m Start from a root, and visit all the
connected nodes in a graph

m Nodes closer to the root are visited first

m Nodes of the same hop-distance (level)
from the root can be visited in parallel

Algorithm 1 Level Synchronous Parallel BES
I: procedure BFS(r:Node) g]ree Node-sets J
and Next set

2 V=C=0; N={r} > Visited, Current,

3 r.lev = level = 0 Nodes of the J
4: repeat current level

5 =¥

6: for Node ¢ € C do > in parallel :

7: for Node n € Nbr(c) do > in parallel Neighbors of

3 if n ¢ V then current level

9: N=NuU{n} V=V U{n} nodes

10: n.lev = level + 1

— p—
o =
s s

level++ \ Add non-visited neighbors
until N = 0 XKSynchronization at the end to Next and Visited gset J
of each level

J

Implementation for Multi-Core CPU

Algorithm 1 Level Synchronous Parallel BFS
m Level Synchronous Parallel BFS 1 procedure BFS(r:Node)

. ;) 9. (=0 N=Ip Tell. g g
= Requires synchronlzatlon ’ } |e\~(-[,7,q(:[‘\-() {r} v Visited, Current, and Next set
at everyl evel 4 repeat
Degree of parallelism limited by ¥ ¢=V |
B 9 P y 6: fior Nodp ¢ > 1n parallel
> in parallel

(# nodes) in each level

m State-of-Art Implementationg
= [Agarwal et. al. SC 2010]
= V = bitmap

= Maximize cache hit ratio
« Atomic update required: ‘test and test-and-set’

= C, N=» queue
=« Local Queue + Global Queue
« Complex queue implementation based on ticket-lock and
fast forwarding
= Not so much details revealed in their paper

= Avoid unnecessary cache-to-cache traffic

Outperformed
previous
implementations

Can we do better?

m Issues
= Requires complex queue implementation
= Can we do better even without it?

m Our two implementations

@ Queue-Based Implementation

= Approximate Agarwal et. al.’s approach
« Bitmap
« Test and Test-and-Set
= Local Q + Global Q
« Standard Queue

m Another implementation
= Exploit properties of the graphs
= Exploit properties of the machines

Observation on Graphs

= Small-World Property [Watts and Strogatz, Nature 1998]
= Any randomly-shaped graphs has a small diameter
("Six-degrees of separation”)
= A fundamental property
: web graphs, social graphs, molecular graphs, ...

Level Num. Nodes
|

[Corollary] There must be at least one level
that has O(N) nodes.

—
—

A

o -
2 749
Regular Graph: Adding Ramdom re-wiring: _ L 2 100230
Diameter O(N) Diameter 9 O(c) otal execution 2 =103 600
time is governed S 0 08 766]
60 by these critical ;) 12;)’8(:
levels v 7

172

O (e.g.) Number of nodes at each BFS
level (16 million node graph)

Read-based implementation

= Another implementation of ours
= V: Bitmap
m C, N: Level-Array

= A single O(N)-sized array that
keeps the level of each node

o 1 2

inf | inf |inf | ... |inf

inf | 0 ilnf inf | inf a Level 0
110 irl1f 1 | inf Q @
1 |o 2 I 1 |2 @ e

Read the entire array!

while (!finished) {
foreach (c: G.Nodes) {

continue;

}

lev++;

}

if (level[c] !'= curr_ lev)

4

Level 1 lterate nodes in Current set

Instead of keeping
queues, update the
value in the level

Adding nodes to Next set — array.

What’s the benefit of that?

(1) The array is read sequentially

(1)-b Overall access pattern
become more sequential as well

(2) There are only a few level;

In critical levels, you have to
visit O(N) nodes anyway.

crent | () (@ @)
Queue S
0 4
A ~ A —A A ~—
Packed T
Adjacency |a|b|c h ik njolplg
LiSt 1 >|" : > :

...... AT

(a) Data-Access Pattern of Queue Based Method

Machine

Seq. Read

Random Read

Nehalem CPU 8.6 GB/s
Core CPU 3.0 GB/s
Fermi GPU 76.8 GB/s
Tesla GPU 72.5 GB/s

0.98 GB/s
0.25 GB/s
2.71 GB/s
3.15 GB/s

But cannot eliminate all the natural
random accesses.

Level
List

Packed
Adjacency
List

0 2314
I [|1
1 1[N|1[N|N[1]|0 ;
Els |FI|F
2
— 1 Y A ~—*—v ﬁ Y_A_\
a|b|c|dle|f|g|h|i]|]|k nopq:,-:":
N A R A R R A A

(b) Data-Access Pattern of Read-Based Method

Queue-Based vs. Read-Based

o . : Small increase
m Level-wise execution time breakdown " non-critical

levels (1,2, 6

and 7)
Num. Nodes

|
4

749
109,239

7,103,690
0,088,766

lime (ms)

130,298
172 Reduction in

critical levels
(e.g.) Number of nodes at each BFS level (16 (3, 4 and 5)

million node graph)
Clueus Read

@Level 0 B Level 1 OlLevel 2 BlLevel 3 OLevel 4
Blevel 5 W Level 6 BElLevel 7

What about big-world graphs?

m Worst-case inputs for Read-based method:
1. High-diameter graphs

= Recent graph applications (e.g. social network)
deal with small-world graphs more frequently

= Still, there are high-diameter graphs: e.g. mesh

$ii 1529

2. Small search instance
= When the graph is not (strongly) connected

= Your traversal finishes after visiting only small
portion of the graph

Preventing worst case execution

> Our solution: hybrid method

= Choose appropriate method (Read or Queue),
adaptively at each level

= Based on the size of Next set and its growth rate.

= Finite State Machine N
_ If Next is large enough

Go Parallel (with (€.g. p% of num nodes) or

Queues) when there ~ .ﬁ exponential growing,

are enough # nodes. INext] > T, migrate to Read method

SEQ QUEUE

4 P \ J

_ - INext| > T, or
therwise _~(INext| > a *|Curr| and

\
\

_— INext| > Ty)
/ READ\"\INextI > T, Queu*
Process the root node, \:JSUE To
g READ
sequentially. — s
|INext| = Ty or
S P AN Transient state:

Read from Queue,
Write to Array

Return to Queue method *\READ /ﬁ
when Next is shrinking =

Result: worst-case avoidance

m BFS on tree
> Y-axis: time (high is bad)

> Mix of large search instances (good for Read)
and small search instances (good for Queue)

Tree

Small search
instances

Large search
instances

Time (ms)

ed Execution

—

Accumula

390

The FSM allows
best of both
methods

|

Read

Read+Queue

Result: worst-case avoidance

m 2-D Mesh
= 4000x4000

= Diameter is O(sqrt(N))

« (# nodes) at each level increases not
exponentially, but linearly

Read-based
method showed a

Method Normalized Execution Time lot of overheads

Queue [.00

Read 12.63 Hybrid

Queue+Read 1.0] Queue+Read
method avoids it

Graph Exploration on GPU

= GPU Benefits
= Large memory bandwidth (GDDR, # channels)
= Massively parallel hardware
= HW multi-threading + SIMD(/SIMT)
= HW Traits similar to Cray-XMT
« But much cheaper
m GPU Issues
= Limited capacity (~ a few GB)

= Our approach:
= Use GPU, only if the graph fits
= Use multi-core CPU, otherwise
= But how much performance does this give?

Graph Exploration on GPU

= BFS on GPU
= [Harish and Narayanan, HiPC 2007], [Hong et al, PPoPP2011]
= Similar to Queue-based implementation
= Visited, Next, Current = Level Array
= If level[node] is INF, then node is not visited
= Hard to do bitwise atomic operation efficiently on GPU

= A node can be written multiple times by different parents =
Okay, because the written level value is always same

O
@

= ... But it has the same issue as Queue-based method
= Bad for small or long-diameter graphs

Hybrid CPU+GPU

= An extension to the previous FSM

INext| =T, \
INext| > T, Migrate to GPU, only if
SEQ the graph is growing
exponentially
‘ J

3 |[Next| > a *|Curr|
.‘\ QUEUE ; and |Next| >T4

R . Need data copy to GPU.
' (i.e. ship out the contents
in the queue)

CopyBack i 5 InitGPU

__

from GPU

»
Otherwise, go Finished ',
back to CPU-
based FSM Copy back level values }

- J

GPU: Worst-case avoidance

m BFS on tree with GPU

h GPU: Worse for

i Small n) (small instances
earches Wil cost)

8

Hybrid
method

avoids
| worst-case

Read+Queue CPU+GPU

Il

n
o

2

[
w0
o

3

ccumulated Execution Time (ms)

,}6

Large \
Searches

A

Experiments on Small-world Graphs

m Multi-Core CPU

Intel Nehalem (X5550)
2.67GHz

2 Socket x 4 Core x 2 HT
LLC: 8MB x 2
Main Memory: 24GB

x GPU

Nvidia Fermi (C2050) 1.15GHz
14 SM x (2 warps) x 32 SIMT
LLC: 2MB

Main Memory: 3GB

m Measurement

Start from multiple root nodes

Measure average execution
time from multiple executions

= Graphs

Two kinds of widely
accepted synthetic graphs

Random (Erdos-Renyi)
= Simple uniform random
RMAT

=« Skewed degree distribution
(good)

« Many (~50%) unconnected
nodes (bad)

32mil nodes, 256 mil edges

Performance Results

Billion Edges Per Sec

m Multi-Core CPU Result
m Yy-axis: processing rate (Higher is better)
= SC10-EP: numbers from [Agarwal et. al SC10]

= Measured for same sized graph on a faster (2.9Ghz)
machine

Read+Queue gives

approximates

Read-based > Queue-Based
Queue-based
0.4

|

04 |
small performance SC10
Improvement .
03 | T 03 |
[} &
r//- 63”
02 | / S 02 |
c
. 2
a
01 | 0.1 | 16 thread uses
hyper-threading
0 | RMAT > Uniform ~_
0 4 8 (due to unconnected |o 4 8 12 16
(a) Uniform Num Threads nOdeS) b) RMAT Num Threads
—_—— Queue —— Read Read+Queue i SC10-EP —_—— Queue —T— Read Read+QueUe et SC10-EP

Performance Results

Billion Edges Per Sec

m GPU Result

= Same graph inputs

GPU:1.5x ~ 2x

(compared to best

CPU 16 threads)

ot
n

o
N

o

o

Num Threads

(a) Uniform

— M- Read+Queue === SC10-EP === GPU

—®— GPU+CPU

Billion Edges Per Sec

CPU + GPU can
give small
performance
improvement

(b) RMAT

=~ A= Read+Queue

8
Num Threads

SC10-EP === GPU

i GPU+CPU

Changing Graph Size

m Varying number of nodes

1mil ~ 64 mil Performance difference
widens as graph size grows
= # Edges = (# Nodes) x 8 | (cache-cache miss doesn’t

= # Threads = 16 matter much)

Billion Edges Per Sec

20 30 40 50 0 10 20 30 40 50
(a) Uniform Number of Nodes (million) (b) RMAT Number of Nodes (million)

=g Queue = A= Read+Queue ===se==SC10-EP === GPU+CPU == Queue = A&~ Read+Queue ====SC10-EP =@ GPU+CPU

Changing Graph Size

m Varying number of edges
= 256 mil ~ 2048 mil [/)

: Performance
Nodes = 32 mil -
. gap widens as [GPU still performs better; J

= # Threads = 16 the graph size but has hit size limit

o
o

o

o
o

ot
W

Billion Edges Per Sec
o« o ¢
w

Billion Edges Per Sec

o

=)
N
o
N

o
=
o
=Y

o

0

0 0.5 1 1.5 : 0 0.5 1 1.5
Number of Edges (Billion) Number of Edges (Billion)

(a) Uniform (b) RMAT

—4g— Queue = A~ Read+Queue === SC10-EP —@— GPU+CPU —g— Queue = A~ Read+Queue == SC10-EP -—@— GPU+CPU

Architectural Effects

Nehalem Nehalem

| Nehalem __|Fermi ___|Core | Tesh SC10-EP | SC10-EX

2.67GHz
2x4(x2)

Freq.

(# Cores)
SIMD/SIMT
LLC (MB)
Memory

Rnd Read

0.7
0.6
0.5
0.4

0.3

Bilon Edges Per Sec

16 MB
24 GB
0.98 GB/s

Core vs.
Nehalem:
Memory
BW

1.15GHz
14 x 2

32

2 MB
3GB
2.71 GB/s

2.33GHz
2x4

8 MB

32 GB
0.25 GB/s

Fermi vs. Tesla:
L2 Cache as
write buffer

1.40GHz
30

32

896 MB
3.15 GB/s

2.93GHz
2x4 (x2)
16 MB

48 GB

2.26GHz
4x8(x2)
96 MB
256 GB

CPU vs. GPU?
(1) Size of graph
(2) What you can

8
£

I

afford

mRMAT 16
ORMAT 32
aUniform 16

o Uniform 32

#Node :16/32 mil
Avg. Degree = 8

Summary

m "Why” rather than "How”

m Exploited properties of graphs and machines
= Small-world property

= Bandwidth difference between sequential
access and random access

m A simple state-machine to avoid worst-case
execution

m Graph exploration on GPU
= Limited capacity
= Faster execution due to memory bandwidth

Thank you

m Questions?

