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Algorithm 1 Level Synchronous Parallel BES
I: procedure BFS(7r:Node)

Three Node-sets ]

% V=C=0; N={r} > Visited, Current, and Next set

£, r.lev = level = 0 Nodes of the

4: repeat current level

5 =¥

6: for Node ¢ € C do > in parallel .

7: for Node n € Nbr(c) do > in parallel Neighbors of

3 if n ¢ V then current level

9: N=NuU{n}V=VU{n} nodes

10: n.lev = level + 1

L1 level++ N~ Add non-visited neighbors

12: until N = 0 XKSynchronization at the end to Next and Visited %et J
of each level

J




Algorithm 1 Level Synchronous Parallel BFS

| procedure BFS(r:Node)
V=C=0;N={r} v Visited, Curent, and Next set
rlev = level = ()

> in parallel
> in parallel

Outperformed

previous
Implementations
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[Corollary] There must be at least one level Level Num. Nodes

that has O(N) nodes. s 0 I

I +
: y 2 749
Regular Graph: Adding Ramdom re-wiring: 2 100.230

Total execution
time is governed

Diameter O(N)  Diameter  O(c) 27103600

by these critical
levels

o

130,298

4
5 0,088,766
6

7 172

(e.g.) Number of nodes at each BFS
level (16 million node graph)
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Adding nodes to Next set

Read the entire array!

while  (Mfinished) {

foreach  (c: G.Nodes) {
if  (level[c] !'= curr_lev)
continue ;

}

lev++:

}

4

Ilterate nodes in Current set

@ Level 1

Instead of keeping
e gueues, update the
value in the level

‘Karray.
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(a) Data-Access Pattern of Queue Based Method

Machine Seq. Read  Random Read
Nehalem CPU 8.6 GB/s  0.98 GB/s
Core CPU 3.0 GB/s  0.25 GB/s
Fermi GPU 76.8 GB/s  2.71 GB/s
Tesla GPU 72.5 GB/s  3.15 GB/s

But cannot eliminate all the natural
random accesses.

Level
List

Packed
Adjacency
List

0 234
I {1
1 1[N|1|N[IN[1({O|1 ;
Ei> |F|F
2
A ’Xl' > A Y—AW ﬂ' Y_A__‘
alblc|d|e|f|g|h]i|][k nopq_;'i

(b) Data-Access Pattern of Read-Based Method




Num. Nodes
1
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749

109,239
7.103.690
0,088,766
130,208

172 Reduction in

critical levels
(e.g.) Number of nodes at each BFS level (16 (3, 4 and 5)
million node graph)

Small increase
In non-critical
levels (1,2, 6
and 7)

Time (ms)

@Level 0 B Level 1
Blevel 5 W Level 6

OlLevel 2 BlLevel 3 OLevel 4
BElLevel 7
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Go Parallel (with
Queues) when there
are enough # nodes.

Process the root node,
sequentially.

Return to Queue method
when Next is shrinking

(INext| < B *|Curr])

]Nextl > T,

therwuse

/READ\\INextI Ta
\]UEUE

|INext| = Ty or

QUEUE

INextl > Tz or

(|Next| > a *|Curr| and \

|INext| > T,)

Queue\\

To
READ

READ '\

A

\
If Next is large enough
(e.g. p% of num nodes) or
exponential growing,
migrate to Read method

/

Transient state:
Read from Queue,
Write to Array
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@ The FSM allows
best of both
methods
Tree { )

Small search
instances

Large search
instances
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Read-based
method showed a
lot of overheads

Hybrid
Queue+Read
method avoids it
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Otherwise, go
back to CPU-
based FSM

o

J

% 3
\
INext| > T, Migrate to GPU, only if
SEQ the graph is growing
exponentially
J

/ \ INext| >  *|Curr]|
i QUEUE and |Next| >T ,

e & . Need data copy to GPU.
' ' (i.e. ship out the contents
in the queue)

InitGPU

Finished

Copy back level values
from GPU




GPU: Worse for
small instances
(fixed cost)

Small
Searches

Hybrid
method
avoids

worst-case

{

Large
Searches
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Read-based >
Queue-based

Read+Queue gives
small performance
improvement

approximates

Queue-Based
SC10

16 thread uses
hyper-threading

N

RMAT > Uniform
(due to unconnected

nodes)

(a) Uniform b) RMAT




CPU + GPU can
give small

performance

improvement

GPU:1.5x ~ 2x
(compared to best
CPU 16 threads)

(a) Uniform (b) RMAT




(a) Uniform

Performance difference
widens as graph size grows
(cache-cache miss doesn’t
matter much)

(b) RMAT




(a) Uniform

‘5M K :6IE
8 N:
8C ‘M
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Performance
gap widens as
the graph size

grows

(b) RMAT

GPU still performs better;
but has hit size limit

|




& Nehalem Nehalem

|| Nehalem __|Fermi ___[Core ___[Tesla SC10-EP___SCIO-EX

Freq. 2.67GHz 1.15GHz 2.33GHz 1.40GHz 2.93GHz 2.26GHz
(# Cores) 2Xx4(x2) 14 x 2 2 x4 30 2x4 (x2) 4x8(x2)
SIMD/SIMT - 32 - 32 - -

LLC (MB) 16 MB 2 MB 8 MB - 16 MB 96 MB
Memory 24 GB 3GB 32 GB 896 MB 48 GB 256 GB
Rnd Read 0.98 GB/s 2.71 GB/s 0.25 GB/s 3.15 GB/s -

CPU vs. GPU?
(1) Size of graph
(2) What you can
afford

Fermi vs. Tesla:
L2 Cache as

Core vs.
Nehalem:

Memory write buffer

BW

#Node :16/32 mil
Avg. Degree = 8










