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ABSTRACT
Concurrent collection classes are widely used in multi-thread-
ed programming, but they provide atomicity only for a fixed
set of operations. Software transactional memory (STM)
provides a convenient and powerful programming model for
composing atomic operations, but concurrent collection al-
gorithms that allow their operations to be composed using
STM are significantly slower than their non-composable al-
ternatives.

We introduce transactional predication, a method for build-
ing transactional maps and sets on top of an underlying
non-composable concurrent map. We factor the work of
most collection operations into two parts: a portion that
does not need atomicity or isolation, and a single transac-
tional memory access. The result approximates semantic
conflict detection using the STM’s structural conflict detec-
tion mechanism. The separation also allows extra optimiza-
tions when the collection is used outside a transaction. We
perform an experimental evaluation that shows that pred-
ication has better performance than existing transactional
collection algorithms across a range of workloads.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features – Concurrent programming structures; D.1.3
[Programming Techniques]: Concurrent Programming –
Parallel programming; E.1 [Data Structures]: Distributed
data structures, trees

General Terms: Algorithms, Performance
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1. INTRODUCTION
Concurrent sets and maps classes have emerged as one of

the core abstractions of multi-threaded programming. They
provide the programmer with the simple mental model that
most method calls are linearizable, while admitting efficient
and scalable implementations. Concurrent hash tables are
part of the standard library of Java and C#, and are part
of Intel’s Thread Building Blocks for C++. Concurrent skip
lists are also widely available. The efficiency and scalability
of these data structures, however, comes from the use of
non-composable concurrency control schemes. None of the
standard concurrent hash table or skip list implementations
provide composable atomicity.

Software transactional memory (STM) provides a natural
model for expressing and implementing compound queries
and updates of concurrent data structures. It can atom-
ically compose multiple operations on a single collection,
operations on multiple collections, and reads and writes to
other shared data. Unlike lock-based synchronization, com-
position does not lead to deadlock or priority inversion.

If all of the loads and stores performed by a hash table,
tree, or skip list are managed by an STM, then the result-
ing data structure automatically has linearizable methods
that may be arbitrarily composed into larger transactions.
The STM implementation may also provide useful proper-
ties such as: optimistic conflict detection with invisible read-
ers (provides the best scalability for concurrent readers on
cache-coherent shared memory architectures) [23]; lock- or
obstruction-freedom (limits the extent to which one thread
can interfere with another) [24]; intelligent contention man-
agement (prevents starvation of individual transactions) [9];
and modular blocking using using retry and orElse (allows
composition of code that performs conditional waiting) [11].

We apply the adjective ‘transactional’ to a data structure
if its operations may participate in a transaction, regardless
of the underlying implementation. The most straightfor-
ward way of implementing such an algorithm is to execute
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all shared memory accesses through the STM; the result will
automatically be transactional, but it will suffer from high
single-thread overheads and false conflicts. For many appli-
cations, trading some speed for improved programmability
can be a good decision. Maps and sets are such fundamen-
tal data structures, however, that the additional internal
complexity and engineering effort of bypassing the STM is
justified if it leads to improvements in performance and scal-
ability for all users.

This paper introduces transactional predication, the first
implementation technique for transactional maps and sets
that preserves the STM’s optimistic concurrency, contention
management, and modular blocking features, while reducing
the overheads and false conflicts that arise when the STM
must mediate access to the internal structure of the collec-
tion. We factor each transactional operation into a referen-
tially transparent lookup and a single STM-managed read
or write. This separation allows the bulk of the work to by-
pass the STM, yet leaves the STM responsible for atomicity
and isolation. Our specific contributions:

• We introduce transactional predication, the first meth-
od for performing semantic conflict detection for transac-
tional maps and sets using an STM’s structural conflict
detection mechanism. This method leverages the existing
research on STM implementation techniques and features,
while avoiding structural conflicts and reducing the con-
stant overheads that have plagued STM data structures
(Section 3).

• We use transactional predication to implement transac-
tional sets and maps on top of linearizable concurrent
maps (Section 3). We add support for iteration in un-
ordered maps (Section 5.1), and describe how to perform
iteration and range-based search in ordered maps (Sec-
tion 5.2).

• We describe two schemes for garbage collecting predicates
from the underlying map: one based on reference counting
(Section 4.1), and one using soft references (Section 4.2).

• We experimentally evaluate the performance and scalabil-
ity of maps implemented with transactional predication,
comparing them to best-of-breed non-transactional con-
current maps, data structures implemented directly in an
STM, and concurrent maps that have been transactionally
boosted. We find that predicated maps outperform exist-
ing transactional maps, often significantly (Section 6).

2. BACKGROUND
Sets and associative maps are fundamental data struc-

tures; they are even afforded their own syntax and seman-
tics in many programming languages. Intuitively, concurrent
sets and maps should allow accesses to disjoint elements to
proceed in parallel. There is a surprising diversity in the
techniques developed to deliver this parallelism. They can
be roughly grouped into those that use fine-grained locking
and those that use concurrency control schemes tailored to
the specific data structure and its operations. Transactional
predication is independent of the details of the underlying
map implementation, so we omit a complete survey. We re-
fer the reader to [16] for step-by-step derivation of several
concurrent hash table and skip list algorithms.

Concurrent collection classes are widely used, but they do
not provide a means to compose their atomic operations.
This poses a difficulty for applications that need to simul-
taneously update multiple elements of a map, or coordinate
updates to two maps. Consider an application that needs
to concurrently maintain both a forward and reverse associ-
ation between keys and values, such as a map from names
to phone numbers and from phone numbers to names. If
the forward and reverse maps are implemented using hash
tables with fine-grained locks, then changing a phone num-
ber while maintaining data structure consistency requires
acquiring one lock in the forward map (to change the value
that records the phone number), and two locks in the re-
verse map (to remove the name from one number and add
it to another). This would require breaking the clean inter-
face to the concurrent map by exposing its internal locks,
because it is not sufficient to perform each of the three up-
dates separately. This example also leads to deadlock if the
locks are not acquired following a global lock order, which
will further complicate the user’s code. Lock-free hash ta-
bles don’t even have the option of exposing their locks to
the caller. Transactional memory, however, provides a clean
model for composing the three updates required to change
a phone number.

While there has been much progress in efficient execu-
tion of STM’s high-level programming model, simply wrap-
ping existing map implementations in atomic blocks will not
match the performance achievable by algorithm-specific con-
currency control. Data structures implemented on top of an
STM face two problems:

• False conflicts – STMs perform conflict detection on the
concrete representation of a data structure, not on its ab-
stract state. This means that operations that happen to
touch the same memory location may trigger conflict and
rollback, despite the operations being semantically inde-
pendent.

• Sequential overheads – STMs instrument all accesses
to shared mutable state, which imposes a performance
penalty even when only one thread is used. This penalty
is a ‘hole’ that scalability must climb out of before a par-
allel speedup is observed. Sequential overheads for STM
are higher than those of traditional shared-memory pro-
gramming [5] and hand-rolled optimistic concurrency [2].

False conflicts between operations on a transactional data
structure can be reduced or eliminated by performing se-
mantic conflict detection at the level of operations. Rather
than computing conflicts based on the reads from and writes
to individual memory locations, higher-level knowledge is
used to determine whether operations conflict. For exam-
ple, adding k1 to a set does not semantically conflict with
adding k2 if k1 6= k2, regardless of whether those opera-
tions write to the same chain of hash buckets or rotate the
same tree nodes. Because semantically independent transac-
tions may have structural conflicts, some other concurrency
control mechanism must be used to protect accesses to the
underlying data structure. This means that a system that
provides semantic conflict detection must break transaction
isolation to communicate between active transactions. Iso-
lation can be relaxed for accesses to the underlying structure
by performing them in open nested transactions [4, 22], or
by performing them outside transactions, using a lineariz-
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able algorithm that provides its own concurrency control.
The latter approach is used by transactional boosting [13].

Although semantic conflict detection using open nested
transactions reduces the number of false conflicts, it ex-
acerbates sequential overheads. Accesses still go through
the STM, but additional information about the semantic
operations must be recorded and shared. Semantic con-
flict detection using transactional boosting reduces sequen-
tial overheads by allowing loads and stores to the underly-
ing data structure to bypass the STM entirely, but it ac-
complishes this by adding a layer of pessimistic two-phase
locking. These locks interfere with optimistic STMs, voiding
useful properties such as opacity [10], obstruction- or lock-
freedom, and modular blocking [11]. In addition, boosting
must be tightly integrated to the STM’s contention manager
to prevent starvation and livelock.

The goal of our research into transactional collections is
to produce data structures whose non-transactional perfor-
mance and scalability is equal to the best-of-breed concur-
rent collections, but that provide all of the composability
and declarative concurrency benefits of STM. Transactional
predication is a step in that direction.

3. TRANSACTIONAL PREDICATION
Consider a minimal transactional set, that provides only

the functions contains(e) and add(e). Semantically, these
operations conflict only when they are applied to equal ele-
ments, and at least one operation is an add 1:

conflict? contains(e1) add(e1)
contains(e2) no e1 = e2

add(e2) e1 = e2 e1 = e2

This conflict relation has the same structure as the basic
reads and writes in an STM: two accesses conflict if they
reference the same location and at least one of them is a
write:

conflict? stmRead(p1) stmWrite(p1, v1)
stmRead(p2) no p1 = p2

stmWrite(p2, v2) p1 = p2 p1 = p2

The correspondence between the conflict relations means
that we can perform semantic conflict detection in our trans-
actional set by mapping each element e to a location p, per-
forming a read from p during contains(e), and performing
a write to p during add(e).

Of course, conflict detection is not enough; operations
must also query and update the abstract state of the set,
and these accesses must be done in a transactional manner.
Perhaps surprisingly, the reads and writes of p can also be
used to manage the abstract state. Transactional predica-
tion is based on the observation that membership in a finite
set S can be expressed as a predicate f : U → {0, 1} over a
universe U ⊇ S of possible elements, where e ∈ S ⇐⇒ f(e),
and that f can be represented in memory by storing f(e)
in the location p associated with each e. We refer to the p
associated with e as that element’s predicate. To determine
if an e is in the abstract state of the set, as viewed from the
current transactional context, we perform an STM-managed
read of p to see if f(e) is true. To add e to the set, we per-
form an STM-managed write of p to change the encoding for
f(e). The set operations are trivial as the complexity has
been moved to the e→ p mapping.

1We assume a non-idempotent add that reports set changes.

1 class TSet[A] {
2 def contains(elem: A): Boolean =
3 predForElem(elem).stmRead()
4 def add(elem: A): Boolean =
5 predForElem(elem).stmReadAndWrite(true)
6 def remove(elem: A): Boolean =
7 predForElem(elem).stmReadAndWrite(false)
8
9 private val predicates =

10 new ConcurrentHashMap[A,TVar[Boolean]]
11 private def predForElem(elem: A) = {
12 var pred = predicates.get(elem)
13 if (pred == null) {
14 val fresh = new TVar(false)
15 pred = predicates.putIfAbsent(elem, fresh)
16 if (pred == null) pred = fresh
17 }
18 return pred
19 }
20 }

Figure 1: A minimal but complete transactionally
predicated set in Scala. Read and write barriers are
explicit. TVar is provided natively by the STM.

The final piece of TSet is the mapping from element to
predicate, which we record using a hash table. Precom-
puting the entire relation is not feasible, so we populate
it lazily. The mapping for any particular e never changes,
so predForElem(elem) is referentially transparent; its imple-
mentation can bypass the STM entirely.

Although the mapping for each element is fixed, reads
and lazy initializations of the underlying hash table must
be thread-safe. Any concurrent hash table implementation
may be used, as long as it provides a way for threads to
reach a consensus on the lazily installed key-value associa-
tions. Figure 1 shows the complete Scala code for a minimal
transactionally predicated set, including an implementation
of predForElem that uses putIfAbsent to perform the lazy
initialization. putIfAbsent(e, p) associates p with e only if
no previous association for e was present. It returns null on
success, or the existing p0 on failure. In Figure 1, Line 15
proposes a newly allocated predicate to be associated with
elem, and Line 16 uses the value returned from putIfAbsent
to compute the consensus decision.

3.1 Atomicity and Isolation
Transactional predication factors the work of TSet oper-

ations into two parts: lookup of the appropriate predicate,
and an STM-managed access to that predicate. Because the
lookup is referentially transparent, atomicity and isolation
are not needed. The lookup can bypass the STM completely.
The read or write to the predicate requires STM-provided
atomicity and isolation, but only a single access is performed
and no false conflicts can result.

Bypassing the STM for the predicate map is similar to
Moss’ use of open nesting for String.intern(s), which in-
ternally uses a concurrent set to merge duplicate strings [21].
Like strings interned by a failed transaction, lazily installed
predicates do not need to be removed during rollback.

Figure 2 shows a simultaneous execution of add(10) and
contains(10) using the code from Figure 1. Time proceeds
from the top of the figure to the bottom. Because no pred-
icate was previously present for this key, thread 1 performs
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Thread 1 Thread 2
begin T1 R1

S.contains(10) ∅
S.predForElem(10)

preds.get(10) → null begin T2 R2 W2

new TVar(false) → p S.add(10) ∅ ∅
preds.putIfAbsent(10,p) → null S.predForElem(10)

−→ p ∨ preds.get(10) → p
p.stmRead() → false {p} −→ p ∨ ∨

−→ false p.stmReadAndWrite(true) → false {p}{p:1}
commit ∨ −→ false

commit ∨ ∨

Figure 2: A simultaneous execution of contains(10) and add(10) using the code from Figure 1. Ri and Wi are
the read and write sets. Thread 1 lazily initializes the predicate for element 10.

the lazy initialization of the 10→ p mapping. An association
is present by the time that thread 2 queries the mapping, so
it doesn’t need to call putIfAbsent. At commit time, T1’s
read set contains only the element p. This means that there
is no conflict with a transaction that accesses any other key
of S, and optimistic concurrency control can be used to im-
prove the scalability of parallel reads.

The abstract state of the set is completely encoded in
STM-managed memory locations, so the STM provides atom-
icity and isolation for the data structure. Unlike previous
approaches to semantic conflict detection, no write buffer or
undo log separate from the STM’s are required, and no addi-
tional data structures are required to detect conflicts. This
has efficiency benefits, because the STM’s version manage-
ment and conflict detection are highly optimized. It also has
semantic benefits, because opacity, closed nesting, modu-
lar blocking, and sophisticated conflict management schemes
continue to work unaffected.

There are two subtleties that deserve emphasis: 1) A pred-
icate must be inserted into the underlying map even if the
key is absent. This guarantees that a semantic conflict will
be generated if another transaction adds a key and com-
mits. 2) When inserting a new predicate during add, the
initial state of the predicate must be false and a transac-
tional write must be used to set it to true. This guarantees
that contexts that observe the predicate before the adding
transaction’s commit will not see the speculative add.

3.2 Direct STM vs. Transactional Predication
Figure 3 shows how two transactional set implementations

might execute contains(10). In part (a) the set is presented
by a hash table with chaining. To locate the element, a
transactional read must be performed to locate the current
hash array, then a transactional read of the array is used
to begin a search through the bucket chain. Each access
through the STM incurs a performance penalty, because it
must be recorded in the read set and validated during com-
mit. In addition, reads that occur to portions of the data
structure that are not specific to a particular key may lead
to false conflicts. In this example, remove(27) will conflict
with contains(10), even though at a semantic level those
operations are independent.

Figure 3b shows a predicated set executing contains(10).
A concurrent hash map lookup is performed outside the
STM to locate the predicate. A single transactional read
of the predicate is then used to answer the query. The ab-
stract state is encoded entirely in these STM-managed mem-
ory locations; the mapping from key to predicate has no

Figure 3: Execution of contains(10) in: a) a hash
table performing all accesses to shared mutable state
via STM; and b) a transactionally predicated set.
are STM-managed reads.

side effects and requires no atomicity or isolation. Thus no
scheduling constraints are placed on the STM, and no sepa-
rate undo log, write buffer or conflict information is needed.

3.3 Extending Predication to Maps
The predicate stores the abstract state for its associated

element. The per-element state for a set consists only of
presence or absence, but for a map we must also store a
value. We encode this using Scala’s Option algebraic data
type, which is Some(v) for the presence of value v, or None for
absence. TMap[K,V] predicates have type TVar[Option[V]]:

class TMap[K,V] {
def get(key: K): Option[V] =

predForKey(key).stmRead()
def put(key: K, value: V): Option[V] =

predForKey(key).stmReadAndWrite(Some(value))
def remove(key: K): Option[V] =

predForKey(key).stmReadAndWrite(None)
private def predForKey(k: K): TVar[Option[V]] = ...

}

3.4 Sharing of Uncommitted Data
Like other forms of semantic conflict detection, transac-

tional predication must make the keys of the predicate map
public before the calling atomic block has committed. Carl-
strom et al. [4] propose addressing this problem by using
Java’s Serializable interface to reduce keys to byte arrays
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before passing them across an isolation boundary in their
hardware transactional memory (HTM). The version man-
agement and conflict detection in most STMs does not span
multiple objects; for these systems Moss [21] shows that im-
mutable keys can be shared across isolation boundaries. In
our presentation and in our experimental evaluation we as-
sume that keys are immutable.

4. GARBAGE COLLECTION
The minimal implementation presented in the previous

section never garbage collects its TVar predicates. The un-
derlying concurrent map will contain entries for keys that
were removed or that were queried but found absent. While
information about absence must be kept for the duration
of the accessing transaction to guarantee serializability, for
a general purpose data structure it should not be retained
indefinitely. Some sort of garbage collection is needed.

Predicates serve two purposes: they encode the abstract
state of the set or map, and they guarantee that semanti-
cally conflicting operations will have a structural conflict.
The abstract state will be unaffected if we remove a predi-
cate that records absence, so to determine if such a predicate
can be reclaimed we only need to reason about conflict de-
tection. Semantic conflict detection requires that any two
active transactions that perform a conflicting operation on
the predicated collection must agree on the predicate, be-
cause the predicate’s structural conflict stands in for the
semantic conflict. If transaction T1 calls get(k) and a si-
multaneous T2 calls put(k,v), then they must agree on k’s
predicate so that T1 will be rolled back if T2 commits.

For STMs that linearize during commit, it is sufficient that
transactions agree on the predicate for k during the interval
between the transactional map operation that uses k and
their commit. To see that this is sufficient, let (ai, ei) be the
interval that includes Ti’s access to k and Ti’s commit. If the
intervals overlap, then T1 and T2 agree on k’s predicate. If
the intervals don’t overlap, then assume WLOG that e1 < a2

and that there is no intervening transaction. The predicate
could not have been garbage collected unless T1’s committed
state implies k is absent, so at a2 a new empty predicate will
be created. T2’s commit occurs after a2, so T2 linearizes after
T1. T1’s final state for k is equal to the initial abstract state
for T2, so the execution is serializable.

Algorithms that guarantee opacity can optimize read-only
transactions by linearizing them before their commit, be-
cause consistency was guaranteed at the last transactional
read (and all earlier ones). The TL2 [6] algorithm, for exam-
ple, performs this optimization. We can provide correct exe-
cution for TL2 despite using the weaker agreement property
by arranging for newly created predicates to have a larger
timestamp than any reclaimed predicate. This guarantees
that if a predicate modified by T1 has been reclaimed, any
successful transaction that installs a new predicate must lin-
earize after T1. We expect that this technique will generalize
to other timestamp-based STMs. We leave for future work
a formal treatment of object creation by escape actions in a
timestamp-based STM. The code used in the experimental
evaluation (Section 6) includes the TL2-specific mechanism
for handling this issue.

Predicate reclamation can be easily extended to include
retry and orElse, Harris et al.’s modular blocking opera-
tors [11]. All predicates accessed by a transaction awaiting
retry are considered live.

4.1 Reference Counting
One option for reclaiming predicates once they are no

longer in use is reference counting. There is only a single
level of indirection, so there are no cycles that would require
a backup collector. Reference counts are incremented on ac-
cess to a predicate, and decremented when the enclosing
transaction commits or rolls back. Whenever the reference
count drops to zero and the committed state of a predicate
records absence, it may be reclaimed.

Reference counting is slightly complicated by an inability
to decrement the reference count and check the value of the
predicate in a single step. We solve this problem by giving
present predicates a reference count bonus, so that a zero
reference count guarantees that the predicate’s committed
state records absence. Transactions that perform a put that
results in an insertion add the bonus during commit (ac-
tually, they just skip the normal end-of-transaction decre-
ment), and transactions that perform a remove of a present
key subtract the bonus during commit. To prevent a race
between a subsequent increment of the reference count and
the predicate’s removal from the underlying map, we never
reuse a predicate after its reference count has become 0. This
mechanism is appealing because it keeps the predicate map
as small as possible. It requires writes to a shared memory
location, however, which can limit scalability if many trans-
actions read the same key. Reference counting can is suit-
able for use in an unmanaged environment if coupled with a
memory reclamation strategy such as hazard pointers [20].

4.2 Soft References
When running in a managed environment, we can take

advantage of weak references to reclaim unused predicates.
Weak references can be traversed to retrieve their referent
if it is still available, but do not prevent the language’s
GC from reclaiming the referenced object. Some platforms
have multiple types of weak references, giving the program-
mer an opportunity to provide a hint to the GC about ex-
pected reuse. On the JVM there is a distinction between
WeakReferences, which are garbage collected at the first op-
portunity, and SoftReferences, which survive collection if
there is no memory pressure. Reclamations require mutation
of the underlying predicate map, so to maximize scalability
we use soft references.

Soft references to the predicates themselves are not cor-
rect, because the underlying map may hold the only ref-
erence (via the predicate) to a valid key-value association.
Instead, we use a soft reference from the predicate to a
discardable token object. Collection of the token triggers
cleanup, so we include a strong reference to the token in-
side the predicate’s TVar if the predicate indicates presence.
For sets, we replace the TVar[Boolean] with TVar[Token],
representing a present entry as a Token and an absent entry
as null. For maps, we replace the TVar[Option[V]] with a
TVar[(Token,V)], encoding a present key-value association
as (Token,v) and an absent association as (null,*).

If an element or association is present in any transaction
context then a strong reference to the token exists. If a
transactional read indicates absence, then a strong refer-
ence to the token is added to the transaction object itself,
to guarantee that the token will survive at least until the
end of the transaction. A predicate whose token has been
garbage collected is stale and no longer usable, the same as
a predicate with a zero reference count. If a predicate is
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not stale, contexts may disagree about whether the entry is
present or absent, but they will all agree on the transition
into the stale state.

4.3 Optimizing Non-Transactional Access
Ideally, transactional sets and maps would be as efficient

as best-of-breed linearizable collections when used outside
a transaction. If code that doesn’t need STM integration
doesn’t pay a penalty for the existence of those features,
then each portion of the program can locally make the best
feature/performance tradeoff. Transactionally predicated
maps do not completely match the performance of non-
composable concurrent maps, but we can keep the gap small
by carefully optimizing non-transactional operations.

Avoiding the overhead of a transaction: The trans-
actionally predicated sets and maps presented so far per-
form exactly one access to an STM-managed memory lo-
cation per operation. If an operation is called outside an
atomic block, we can use an isolation barrier, an optimized
code sequence that has the effect of performing a single-
access transaction [17]. Our scheme for unordered enumer-
ation (Section 5.1) requires two accesses for operations that
change the size of the collection, but both locations are
known ahead of time. Saha et al. [23] show that STMs can
support a multi-word compare-and-swap with lower over-
heads than the equivalent dynamic transaction.

Reading without creating a predicate: While non-
transactional accesses to the predicated set or map must
be linearizable, the implementation is free to choose its own
linearization point independent of the STM. This means that
get(k) and remove(k) do not need to create a predicate
for k if one does not already exist. A predicate is present
whenever a key is in the committed state of the map, so if no
predicate is found then get and remove can linearize at the
read of the underlying map, reporting absence to the caller.

Reading from a stale predicate: get and remove can
skip removal and replacement if they discover a stale pred-
icate, by linearizing at the later of the lookup time and the
time at which the predicate became stale.

Inserting a pre-populated predicate: We can lin-
earize a put(k, v) that must insert a new predicate at the
moment of insertion. Therefore we can place v in the pred-
icate during creation, rather than via an isolation barrier.

5. ITERATION AND RANGE SEARCHES
So far we have considered only transactional operations on

entries identified by a user-specified key. Maps also support
useful operations over multiple elements, such as iteration,
or that locate their entry without an exact key match, such
as finding the smallest entry larger than a particular key in
an ordered map. Transactionally predicated maps can im-
plement these operations using the iteration or search func-
tionality of the underlying predicate map.

5.1 Transactional Iteration
For a transactionally predicated map M , every key present

in the committed state or a speculative state is part of the
underlying predicate map P . If a transaction T visits all of
the keys of P , it will visit all of the keys of its transactional
perspective of M , except keys added to M by an operation
that starts after the iteration. If T can guarantee that no
puts that commit before T were executed after the iteration

started, it can be certain that it has visited every key that
might be in M . The exact set of keys in M (and their values)
can be determined by get(k) for keys k in P .

In Section 3 we perform semantic conflict detection for
per-element operations by arranging for those operations to
make conflicting accesses to STM-managed memory. We use
the same strategy for detecting conflicts between insertions
and iterations, by adding an insertion counter. Iterations of
M read this STM-managed TVar[Int], and insertions that
create a new predicate increment it. Iterations that miss a
key will therefore be invalidated.

Unfortunately, a shared insertion counter introduces a
false conflict between put(k1, v1) and put(k2, v2). Rollbacks
from this conflict could be avoided by Harris et al.’s abstract
nested transactions [12], but we use a simpler scheme that
stripes the counter across multiple transactionally-managed
memory locations. Insertions increment only the value of
their particular stripe, and iterations perform a read of all
stripes. By fixing a pseudo-random binding from thread to
stripe, the probability of a false conflict is kept independent
of transaction size.

There is some flexibility as to when changes to the inser-
tion count are committed. Let tP+ be the time at which
the key was inserted into the predicate map P and tM+ be
the linearization time of k’s insertion into M . No conflict
is required for iterations that linearize before tM+, because
k is not part of M in their context. No conflict is required
for iterations that start after tP+, because they will include
k. This means that any iteration that conflicts with the in-
sertion must have read the insertion counter before tP+ and
linearized after tM+. The increment can be performed ei-
ther in a transaction or via an isolation barrier, so long as it
linearizes in the interval (tP+, tM+]. Incrementing the inser-
tion counter at tM+, as part of the transaction that adds k
to M , allows a transactionally-consistent insertion count to
be computed by summing the stripes. If a removal counter is
also maintained, then we can provide a transactional size()
as the difference.

Note that optimistic iteration is likely to produce the
starving elder pathology for large maps with concurrent mu-
tating transactions [1]. We assume that the STM’s con-
tention manager guarantees eventual completion for the it-
erating transaction.

5.2 Iteration and Search in an Ordered Map
In an ordered map, it is more likely that an iterator will be

used to access only a fraction of the elements, for example to
retrieve the m smallest keys. For this use case, the insertion
counter strategy is too conservative, detecting conflict even
when an insertion is performed that does not conflict with
the partially-consumed iterator. Ordered maps and sets also
often provide operations that return the smallest or largest
entry whose key falls in a range. Tracking insertions only at
the collection level will lead to many false conflicts.

We solve this problem by storing an insertion count in
each entry of P , as well as one additional per-collection
count. An entry’s counter is incremented when a predicate
is added to P that becomes that entry’s successor, and the
per-collection counter is incremented when a new minimal
entry is inserted. (Alternately a sentinal entry with a key
of −∞ could be used.) Because these counters only pro-
tect forward traversals, a search for the smallest key > k
first finds the largest key ≤ k and then performs a protected
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traversal. The successor-insertion counters for the ordered
map are not useful for computing size(), so we increment
them using a non-transactional isolation barrier.

Despite the navigation of the underlying map required
when inserting a new predicate, our scheme results in no
false conflicts for get, put and remove, since these opera-
tions neither read nor write any of the insertion counters.
Transactional iteration and range queries may experience
false conflicts if a concurrent operation inserts a predicate
into an interval already traversed by the transaction, but
unlike false conflicts in an STM-based tree or skip list at
most one interval is affected by each insertion.

6. EXPERIMENTAL EVALUATION
In this section we evaluate the performance of an un-

ordered and ordered map implemented using transactional
predication. We first evaluate the predicate reclamation
schemes from Section 4, concluding that soft references are
the best all-around choice. We then show that predicated
hash maps have better performance and scalability than ei-
ther an STM-based hash table or a boosted concurrent hash
table. Finally, we evaluate a predicated concurrent skip list.

Experiments were run on a Dell Precision T7500n with
two quad-core 2.66Ghz Intel Xeon X5550 processors, and
24GB of RAM. We used the Linux kernel version 2.6.28-16-
server. Hyper-Threading was enabled, yielding a total of
16 hardware thread contexts. Code was compiled with Scala
version 2.7.7. We ran our experiments in Sun’s Java SE Run-
time Environment, build 1.6.0 16-b01, using the HotSpot
64-Bit Server VM with compressed object pointers. We use
CCSTM, a reference-based STM for Scala [3]. CCSTM uses
the SwissTM algorithm [7], which is a variant of TL2 [6]
that detects write-write conflicts eagerly.

Our experiments emulate the methodology used by Her-
lihy et al. [14]. Each pass consists of each thread performing
106 randomly chosen operations on a shared map; a new map
is used for each pass. To simulate a variety of workloads,
two parameters are varied: the proportion of get, put and
remove operations, and the range from which the keys are
uniformly selected. A smaller fraction of gets and a smaller
key range both increase contention. Because put and remove
are equally likely in our tests, the map size converges to half
the key range. To allow for HotSpot’s dynamic compilation,
each experiment consists of twenty passes; the first ten warm
up the VM and the second ten are timed. Each experiment
was run five times and the arithmetic average is reported as
the final result.

6.1 Garbage Collection Strategy
To evaluate predicate reclamation strategies, Figure 4 shows

experiments using the following map implementations:

• conc-hash – Lea’s ConcurrentHashMap [19], as included
in the JRE’s standard library;

• txn-pred-none – a transactionally predicated Concurrent-
HashMap, with no reclamation of stale predicates;

• txn-pred-rc – a predicated hash map that uses the ref-
erence counting scheme of Section 4.1; and

• txn-pred-soft – a predicated hash map that uses the the
soft reference mechanism of Section 4.2.

Txn-pred-rc performs the most foreground work, but its
aggressive reclamation yields the smallest memory footprint.
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Figure 4: Throughput for three predicate reclama-
tion strategies (none, reference counting and soft
references), with 80% reads. Lea’s non-composable
ConcurrentHashMap is included for reference.

Txn-pred-soft delays predicate cleanup and has larger pred-
icate objects than txn-pred-rc, reducing locality. Because
the performance effect of locality depends on the working
set size, we show a sweep of the key range for a fixed in-
struction mix (80% get, 10% put and 10% remove), at mini-
mum and maximum thread counts. The optimizations from
Section 4.3 also have a large impact, so we show both non-
transactional access and access in transactions that perform
64 operations (txn2’s curves are similar to txn64’s).

Except for conc-hash, the non-txn experiments represent
the performance of a map that supports transactional ac-
cess, but is currently being accessed outside an atomic block.
Conc-hash is faster than any of the transactional maps, at
least for 1 thread. For some multi-thread non-txn exper-
iments, however, txn-pred-none and txn-pred-soft perform
better than conc-hash, despite using a ConcurrentHashMap
in their implementation. This is because they allow a pred-
icate to remain after its key is removed from the abstract
state of the map, replacing a use of conc-hash’s contended
segment lock with an uncontended write to a TVar. If the
key is re-added, the savings are doubled. This effect appears
even more prominently in Figures 5 and ??, discussed below.

For most transactional configurations (that cannot use the
non-transactional optimizations) txn-pred-soft is both faster
and more scalable than txn-pred-rc. The exception is un-
contended (1 thread) access to a large map, where reference
counting’s smaller memory footprint has a locality advan-
tage that eventually compensates for its extra work. The
largest difference in memory usage between txn-pred-soft
and txn-pred-rc occurs for workloads that perform transac-
tional get on an empty map for many different keys. In
this case txn-pred-rc’s predicate map will contain only a
few entries, while txn-pred-soft’s may grow quite large. For
single-threaded access and 221 key range, this 0% hit rate
scenario yields 73% higher throughput for reference count-
ing. Once multiple threads are involved, however, reference
counting’s locality advantage is negated by shared writes to
the underlying predicate map, and txn-pred-soft performs
better across all key ranges and hit rates.
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Figure 5: Throughput of transactional map implementations across a range of configurations. Each graph
plots operations per microsecond, for thread counts from 1 to 16.

Txn-pred-soft shows better overall performance than txn-
pred-rc, so it is our default choice. For the rest of the per-
formance evaluation we focus only on txn-pred-soft.

6.2 Comparison To Other Transactional Maps
Figure 5 compares the performance of txn-pred-soft to a

hash table implemented via STM, and to a transactionally
boosted map. Conc-hash is included in the non-txn config-
urations for reference:

• stm-hash – a hash map with 16 segments, each of which
is a resizeable transactional hash table.
• boosting-soft – a transactionally boosted Concurrent-

HashMap. Soft references are used to reclaim the locks.

An obvious feature of most of the graphs is decreasing
or constant throughput when moving from 1 to 2 threads.
This is a consequence of the Linux scheduling policy, which
prefers to spread threads across chips. This policy max-
imizes the cache and memory bandwidth available to an
application, but it increases coherence costs for writes to
shared memory locations. We verified this by repeating ex-
periments from Figure 5 using a single processor. For very
high-contention experiments such as 〈non-txn, 211, 0% get〉,
off-chip coherence costs outweigh the benefits of additional
threads, yielding higher throughput for 8 threads on 1 chip
than 16 threads on 2 chips.

Stm-hash includes several optimizations over the hash ta-
ble example used in Section 3.2. To reduce conflicts from
maintaining load factor information, stm-hash distributes
its entries over 16 segments. Each segment is an indepen-

dently resizeable hash table. In addition, segments avoid
unnecessary rollbacks by updating their load factor infor-
mation in an abstract nested transaction (ANT) [12]. To
reduce the number of transactional reads and writes, bucket
chains are immutable. This requires extra object allocation
during put and remove, but improves both performance and
scalability. Finally, we optimized non-transactional get by
performing its reads in a hand-rolled optimistic retry loop,
avoiding the overheads of transaction setup and commit.

The optimizations applied to stm-hash help it to achieve
good performance and scalability for read-dominated non-
txn workloads, and read- or write-dominated workloads with
few accesses. Non-txn writes have good scalability, but their
single-thread performance is poor; the constant overheads of
the required transaction can’t be amortized across multiple
operations. Stm-hash has good single-thread performance
when used by transactions that perform many accesses, but
does not scale well in that situation. Each transaction up-
dates several segments’ load factors, making conflicts likely.
Although the ANTs avoid rollback when this occurs, con-
flicting transactions cannot commit in parallel.

Txn-pred-soft is faster than boosting-soft for every con-
figuration we tested. For non-txn workloads, predication
has two advantages over boosting: 1) The optimizations of
Section 4.3 mean that txn-pred’s non-transactional get(k)
never needs to insert a predicate, while boosting must in-
sert a lock for k even if k is not in the map. This effect
is visible in the non-txn 80% get configurations across all
thread counts. 2) Boosting’s scalability is bounded by the
underlying ConcurrentHashMap. For write-heavy workloads
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conc-hash’s 16 segment locks ping-pong from core to core
during each insertion or removal. Txn-pred-soft’s predicates
are often retained (and possibly reused) after a key is re-
moved from the map, moving writes to lightly-contended
TVars. Conc-hash’s bound on boosting can be clearly seen
in 〈non-txn, 211, 0% get〉, but applies to all workloads.

Some of predication’s performance advantage across all
thread counts comes from a reduction in single-thread over-
heads. Boosting’s implementation incurs a per-transaction
cost because each transaction that accesses a boosted map
must allocate a side data structure to record locks and undo
information, and a commit and rollback handler must be reg-
istered and invoked. Txn-pred-soft uses neither per-transact-
ion data or transaction life-cycle callbacks. Small transac-
tions have less opportunity to amortize boosting’s overhead,
so the single-thread performance advantage of predication is
higher for txn2 configurations than for txn64.

The remainder of predication’s performance advantage is
from better scaling, a result of its use of optimistic reads
and its lack of interference with the STM’s contention man-
agement strategy. The scaling advantage of optimistic reads
is largest for small key ranges and long transactions, both of
which increase the chance that multiple transactions will be
accessing a map entry; see 〈64 ops/txn, 211 keys, 80% get〉.
Boosting’s locks are not visible to or revocable by the STM’s
contention manager, so they negate its ability to priori-
tize transactions. This is most detrimental under high con-
tention, such as 〈64 ops/txn, 211 keys, 0% get〉. In this ex-
periment boosting achieves its best throughput at 1 thread,
while CCSTM’s contention manager is able to provide some
scalability for predication despite a large number of conflicts.

6.3 Ordered Maps
Finally, we evaluate the performance of a transactionally

predicated ordered map, which adds optimistic ordered iter-
ation and range searches to the key-equality operations. The
underlying predicate map is Lea’s ConcurrentSkipListMap.
Figure 6 compares the performance of the predicated skip
list to a red-black tree implemented using STM. (We also
evaluated an STM skip list, but it was slower than the red-
black tree.) The predicated ordered map outperforms the
STM-based ordered map for both configurations and across
all thread counts.

7. RELATED WORK

7.1 Avoiding Structural Conflicts
Herlihy et al. introduced early release as a method to re-

duce the chance of structural conflict during tree searches in
their seminal paper on dynamically-sized STM [15]. Early
release allows the programmer to remove elements from a
transaction’s read set if it can be proved that the results of
the transaction will be correct regardless of whether that
read was consistent. This reasoning is subtle, especially
when reasoning about STM as a means for composing oper-
ations, rather than an internal data structure mechanism for
implementing linearizability. Felber et al.’s elastic transac-
tions provide the conflict reduction benefits of early release
with a more disciplined model [8]. Neither of these tech-
niques reduces the number of transactional barriers.

Harris et al.’s abstract nested transactions (ANT) [12] al-
low portions of a transaction to be retried, increasing the
number of transactions that can commit. ANTs could be
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Figure 6: Throughput for ordered transactional
maps performing 80% reads, either all get or half
get and higherEntry. SortedMap.higherEntry(k) returns
the entry with the smallest key > k.

used to insulate the caller’s transaction from false conflicts
that occur inside data structure operations. However, they
do not avoid the need to roll back and retry the nested trans-
action, and add extra overheads to the base sequential case.

7.2 Semantic Conflict Detection
Semantic conflict detection using open nested transactions

was described concurrently by Ni et al. [22] and Carlstrom
et al. [4]. Ni et al. use open nested transactions in an STM
to commit updates to transactionally managed data struc-
tures before their enclosing transaction commits, by tracking
semantic conflicts with pessimistic locks. Their locks sup-
port shared, exclusive, and intension exclusive access, which
enables them to support concurrent iteration or concurrent
mutation, while correctly preventing simultaneous mutation
and iteration. Carlstrom et al. use open nested transactions
in a hardware transactional memory (HTM) to manage both
the shared collection class and information about the oper-
ations performed by active transactions. This side informa-
tion allows optimistic conflict detection. It is more general in
form than abstract locks, and provides better fidelity than
locks for range queries and partial iteration. Approaches
that use open nesting still use transactions to perform all
accesses to the underlying data structure, and incur addi-
tional overhead due to the side data structures and deeper
nesting. This means that although they reduce false con-
flicts, they don’t reduce STM’s constant factors.

Kulkarni et al. associate lists of uncommitted operations
with the objects in their Galois system [18], allowing addi-
tional operations to be added to a list only if there is no se-
mantic conflict with the previous ones. Several application-
specific optimizations are used to reduce overheads.

Herlihy et al. described transactional boosting [13], which
addresses both false conflicts and STM constant factors.
Boosting uses two-phase locking to prohibit conflicting ac-
cesses to an underlying linearizable data structure. These
locks essentially implement a pessimistic visible-reader STM
on top of the base STM, requiring a separate undo log
and deadlock avoidance strategy. The resulting hybrid pro-
vides atomicity and isolation, but loses useful properties
and features of the underlying STM, including starvation
freedom for individual transactions, obstruction- or lock-
freedom, modular blocking, and timestamp-based opacity.
In addition, boosting requires that the STM linearize dur-
ing commit, which eliminates the read-only transaction opti-
mization possible in STMs such as TL2 [6] and SwissTM [7].
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8. CONCLUSION
This paper has introduced transactional predication, a

technique for implementing high performance concurrent col-
lections whose operations may be composed using STM. We
have shown that for sets and maps we can choose a rep-
resentation that allows a portion of the transactional work
to safely bypass the STM. The resulting data structures ap-
proximate semantic conflict detection using the STM’s struc-
tural conflict detection mechanism, while leaving the STM
completely responsible for atomicity and isolation. Predica-
tion is applicable to unordered and ordered sets and maps,
and can support optimistic iteration and range queries.

Users currently face a tradeoff between the performance of
non-composable concurrent collections and the programma-
bility of STM’s atomic blocks; transactional predication can
provide both. Predicated collections are faster than existing
transactional implementations across a wide range of work-
loads, offer good performance when used outside a transac-
tion, and do not interfere with the underlying STM’s opacity,
modular blocking or contention management.
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