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Abstract
Exploiting heterogeneous parallel hardware currently requires
mapping application code to multiple disparate programming mod-
els. Unfortunately, general-purpose programming models available
today can yield high performance but are too low-level to be acces-
sible to the average programmer. We propose leveraging domain-
specific languages (DSLs) to map high-level application code to
heterogeneous devices. To demonstrate the potential of this ap-
proach we present OptiML, a DSL for machine learning. OptiML
programs are implicitly parallel and can achieve high performance
on heterogeneous hardware with no modification required to the
source code. For such a DSL-based approach to be tractable at
large scales, better tools are required for DSL authors to simplify
language creation and parallelization. To address this concern, we
introduce Delite, a system designed specifically for DSLs that is
both a framework for creating an implicitly parallel DSL as well
as a dynamic runtime providing automated targeting to heteroge-
neous parallel hardware. We show that OptiML running on Delite
achieves single-threaded, parallel, and GPU performance superior
to explicitly parallelized MATLAB code in nearly all cases.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming – Parallel programming; D.3.4
[Programming Languages]: Processors – Code generation, Opti-
mization, Run-time environments

General Terms Languages, Performance

Keywords Parallel Programming, Domain-Specific Languages,
Dynamic Optimizations

1. Introduction
Current industry trends favor chip multiprocessors consisting of
simpler cores[18, 29] as well as heterogeneous systems consisting
of general-purpose processors, SIMD units and accelerator devices
such as GPUs[3, 31]. Existing applications can no longer take ad-
vantage of the additional compute power available in these new and
emerging systems without a significant parallel programming ef-
fort. Writing parallel programs, however, is not straightforward be-
cause in contrast to the familiar and standard von Neumann model
for sequential programming, a variety of incompatible parallel pro-
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gramming models are available, each with their own set of trade-
offs. Emerging heterogeneous systems further complicate this chal-
lenge as each accelerator vendor usually provides a distinct driver
API and programming model to interface with the device.

It is not realistic to expect the average programmer to deal with
all this complexity. Moreover, exposing the programmer directly
to the various models supported by each compute device will ulti-
mately be detrimental to application portability, forward scalability
and maintenance. As new system configurations emerge, applica-
tions will constantly need to be rewritten to take advantage of any
new capabilities. It is essential to develop appropriate abstractions
so that programmers can write high-level code and not worry about
low-level details that negatively impact productivity. Thus, there is
a need for parallel heterogeneous programming models that target
average programmers who are not interested in becoming paral-
lel/heterogeneous programming experts. This mass market parallel
heterogeneous programming model should be driven by the follow-
ing goals:

• Productivity: the application developer can, ideally, write pro-
grams without having to use any explicit parallel or heteroge-
neous constructs.

• Performance: the application should achieve good perfor-
mance without sacrificing productivity. The system metric
should be performance per man-hour.

• Portability and Forward Scalability: the application should
leverage the varying amount of compute resources across dif-
ferent systems, both existing and emerging. The forward scala-
bility goal manifests itself across two dimensions: the number
of a particular compute resource and the diversity of compute
resource types.

There has been a resurgence in research aimed at simplifying
parallel programming [8] and delivering on these goals. This paper
describes key elements of an ongoing effort to create a develop-
ment environment that uses a domain-specific approach to solve
the issues relating to heterogeneous parallelism. The components
of this environment are shown in Figure 1. The environment con-
sists of four main components: applications composed of multiple
domain-specific languages (DSLs), DSLs embedded in the Scala
programming language [28], a Scala-based framework that simpli-
fies the parallelization of DSLs and a runtime for DSL paralleliza-
tion and mapping to heterogeneous architectures.

A domain-specific approach to parallel programming can ad-
dress all of the goals of a mass market parallel heterogeneous pro-
gramming model. A domain-specific language is a computer pro-
gramming language of restricted expressiveness focused on a par-
ticular domain[35]. DSLs are in widespread use in a variety of do-
mains and are becoming more popular. Examples of widely used
DSLs are TeX and LaTeX for typesetting academic papers, SQL
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Figure 1: An environment for domain-specific programming of heterogeneous parallel architectures.

for database querying, Rails for web application development and
VHDL for hardware design. OpenGL can also be viewed as a DSL.
By exposing an interface for specifying polygons and the rules to
shade them, OpenGL created a high-level programming model for
real-time graphics decoupled from the hardware or software used
to render it, allowing for aggressive performance gains as graphics
hardware evolves. The use of DSLs can provide significant gains in
the productivity and creativity of application developers, the porta-
bility of applications, and application performance. We exploit this
trend towards DSLs and propose an approach to parallel hetero-
geneous programming that hides the complexity of the underlying
machine behind a collection of DSLs. A programmer using one or
more of these DSLs writes her programs using domain-specific no-
tation and constructs. The programs appear sequential and all paral-
lelism and use of the heterogeneous machine resources is implicit.
DSLs raise the level of abstraction and can provide a sequential
model which satisfies the productivity goal.

An additional benefit of using a domain-specific approach is the
ability to use domain knowledge to apply static and dynamic opti-
mizations to a program written using a DSL. Most of these domain-
specific optimizations would not be possible if the program was
written in a general-purpose language. General-purpose languages
are limited when it comes to optimization for at least two reasons.
First, they must produce correct code across a very wide range of
applications. This makes it difficult to apply aggressive optimiza-
tions. Compiler developers must err on the side of correctness. Sec-
ond, because of the general-purpose nature needed to support a
wide range of applications (e.g. financial, gaming, image process-
ing, etc.), compilers can usually infer little about the structure of
the data or the nature of the algorithms the code is using. DSLs on
the other hand, with their expressive power and knowledge of the
domain’s data structures and algorithms make such optimizations
feasible. This makes DSLs a good choice to deliver on our perfor-
mance goal. In order to validate this approach, we are developing
multiple DSLs that span a variety of domains. In this paper, we
present OptiML, a DSL aimed at machine learning. We provide an
overview of OptiML in Section 2.

Since interesting applications might leverage a variety of DSLs,
it is critical to not only simplify the development of DSLs by cre-
ating a shared infrastructure, but also to allow these DSLs to inter-
operate. Our current approach is to embed these DSLs in a com-
mon embedding language. Scala, our choice for the embedding
language, provides features that simplify this task [9, 16]. This ap-
proach should be applicable to any sufficiently expressive embed-
ding language.

The ability to easily embed DSLs simplifies the task of a DSL
developer. However, assistance in parallelizing and targeting het-
erogeneous resources is also needed. Delite, our framework and
runtime for building and executing parallel DSLs provides facil-
ities that allow DSL developers to easily parallelize their DSLs.
Using Delite, a DSL developer implicitly exposes task level par-
allelism by enabling a run-ahead model, similar to recent propos-
als [13, 19], across each invocation of the DSL’s operations. Delite
also allows the developer to express data-level parallelism available
within DSL operations. Using such a runtime allows us to deliver
on our portability and forward scalability goal. We provide details
of the Delite framework and runtime in Section 3. Our specific con-
tributions are:

• We present OptiML, a DSL for machine learning, which pro-
vides implicitly parallel domain-specific abstractions. We show
that such a DSL can be used to simplify programming hetero-
geneous parallel systems.

• We show how domain knowledge can aid in extracting implicit
parallelism, and demonstrate the benefits of using domain-
specific optimizations to further enhance the performance of
some machine learning applications.

• We introduce Delite, a framework and runtime to simplify
building and executing implicitly parallel DSLs. We show how
we use Delite to implement and parallelize OptiML.

• We provide experimental results demonstrating the benefits of
using DSLs as a means of simplifying heterogeneous parallel
programming. We demonstrate that in most cases, OptiML run-
ning on Delite outperforms explicitly parallelized MATLAB



code on a set of common machine learning applications exe-
cuting on a combination of CMP and GPU resources.

2. OptiML: A DSL for Machine Learning
In this section, we introduce a DSL written using Delite that will
serve as a running example for the rest of this paper. OptiML is
a DSL for machine learning, a popular and growing domain. Ma-
chine learning (ML) is generally concerned with learning patterns
from data and applying the learned models to tasks such as regres-
sion, classification, clustering, and estimation. ML is a particularly
good domain for studying parallelism: it is at the core of several
emerging applications (e.g. collaborative filtering, object recogni-
tion), it contains applications and datasets that are time-bound in
practice, and it has both regular and irregular parallelism at varying
granularity.

Most machine learning kernels use linear algebra operations and
prominently feature vectors and matrices. MATLAB is one of the
most commonly used languages for ML applications and incorpo-
rates some of the same features that make a DSL appealing. MAT-
LAB increases productivity by providing an easy syntax for manip-
ulating and using vectors and matrices, and improves performance
by providing fast, optimized implementations of linear algebra op-
erations and common algorithms. While it is effective as a language
for linear algebra, it is intended to be general and applicable across
many application domains. By using a DSL specifically targeted at
machine learning, it is possible to capture higher level information
that can be used to increase productivity, improve performance, and
expose more parallelism.

To accomplish these goals, OptiML exploits the following key
aspects of machine learning:

• Many algorithms are iterative and/or solve constrained opti-
mization problems. These algorithms have kernels with a fixed
structure that are executed repeatedly many times.

• Most applications operate on large datasets, and many of these
datasets contain significant redundancy (e.g. network traffic
traces). This implies that some data points in a training set may
not always be essential.

• Many algorithms are probabilistic and can acceptably trade-off
accuracy for performance.

• Kernels contain large amounts of data parallelism at varying
granularity.

• Most algorithms are limited by low arithmetic intensity and
therefore memory bandwidth. Most accesses are either stream-
ing (disjoint) or reductions.

Figure 2 shows a side-by-side comparison of a simple ML ap-
plication written in OptiML and MATLAB. Since most machine
learning users are already familiar with MATLAB, OptiML uses
MATLAB-like syntax and compares favorably in terms of concise-
ness and productivity. OptiML inherits Scala’s static type safety
and type inference, as well as its tooling and IDE support. Op-
tiML is optimized to perform well inside a JVM environment in
a way that is transparent to the user; extreme care is taken to avoid
boxing of primitives and patterns that reduce the effectiveness of
JIT optimizations. Furthermore, the DSL includes native versions
of heavyweight operations (e.g. matrix multiplication) that use JNI
to call an underlying BLAS wrapper. In addition to fast sequen-
tial performance, Section 4 shows that OptiML can provide parallel
performance comparable to or better than equivalent MATLAB im-
plementations. While OptiML programs can achieve good perfor-
mance with a simple imperative style, MATLAB programs usually
require explicit vectorization or parallelization to achieve the best
performance. This problem is compounded by the fact that usu-

ally either vectorization or parallelization must be chosen, and the
trade-off between them is not obvious.

OptiML is implemented as an embedded DSL within Scala. The
current version consists of a compiler plugin and a library. The
compiler plugin allows OptiML to support user-supplied anony-
mous functions as parameters to operations. If an anonymous func-
tion depends on or mutates another data structure, this dependency
must be registered with the runtime. The compiler plugin inspects
closures inside OptiML applications and extracts dependencies,
wrapping them in an object that is dynamically passed on to the
runtime. The plugin can also statically check that OptiML pro-
grams obey the restricted semantics of its control structures, de-
scribed later.

The library provides implementations of implicitly parallel ML-
specific data and control structures. OptiML programs operate on
the high-level mutable types Vector[T] and Matrix[T], regard-
less of their underlying implementation (array-based, views, sparse,
etc.). OptiML also provides data types that encode semantic infor-
mation, such as TrainingSet, TestSet, Image, IndexVector,
etc. Most of these structures are wrappers around matrices or vec-
tors, but their use allows the DSL to identify additional paralleliza-
tion or optimization opportunities. For example, most applications
operate on training sets in a streaming fashion, and training sets are
usually very large. OptiML can exploit this information when de-
ciding whether an operation is worth parallelizing or shipping to a
heterogeneous device such as a GPU. These domain-informed de-
cisions are communicated to the Delite runtime using the interfaces
described in Section 3.3.2. Although not currently supported, future
versions of OptiML will have direct support for irregular structures
that occur in ML, such as graphs.

In addition to these data structures, OptiML provides concise
and flexible control structures. OptiML’s control structures hide im-
plementation details and expose coarse-grained parallelism inside
applications. Although most operations in OptiML can be executed
in parallel, this often results in fine-grained parallelism that does
not scale well (e.g. vector addition). These domain specific control
abstractions allow intuitive application code that is already decom-
posed into scalable operations. OptiML can dynamically check the
size of the operation (e.g. the number and type of elements being
summed) to determine whether it should submit a sequential or par-
allel operation to Delite. A summary of supported control structures
is provided in the pseudocode snippets of Listing 1.

1 // sum: implemented as a parallel tree-reduce
2 val ans = sum(begin, end){ i =>
3 <ith value to sum> }
4
5 // vector construction: implemented as a parallel map
6 val my_vector = (0::end) { i =>
7 <ith value of my_vector> }
8
9 // untilconverged: implemented sequentially, but can

10 // be parallelized dynamically using optimizations
11 untilconverged(x, threshold) { x =>
12 <new value of x> }
13
14 // gradient descent: implemented sequentially using
15 // stochastic, or in parallel using batch g.d.
16 gradient(trainingSet, alpha, threshold) {
17 <hypothesis function, takes a training sample and
18 returns a scalar> }

Listing 1: Pseudocode snippets demonstrating OptiML control
structures.

The control structures listed here support efficient parallelism
in our current set of example applications. Two of these structures,
sum{...} and (0::end){...} employ restricted semantics that



1 % x: Matrix
2 % y: Vector
3
4 m = length(y);
5 n = size(x, 2);
6 y_ones = 0;
7 y_zeros = 0;
8 mu0_num = zeros(1,n);
9 mu1_num = zeros(1,n);

10
11 for i=1:m
12 if (y(i) == 0)
13 y_zeros = y_zeros + 1;
14 mu0_num = mu0_num + x(i,:);
15 else
16 y_ones = y_ones + 1;
17 mu1_num = mu1_num + x(i,:);
18 end
19 end
20
21 phi = 1/m * y_ones;
22 mu0 = mu0_num / y_zeros;
23 mu1 = mu1_num / y_ones;
24
25 sigma = zeros(n, n);
26 for i=1:m
27 if (y(i) == 0)
28 sigma = sigma + (x(i,:)-mu0)’*(x(i,:)-mu0);
29 else
30 sigma = sigma + (x(i,:)-mu1)’*(x(i,:)-mu1);
31 end
32 end

1 // x : TrainingSet[Double]
2
3 val m = x.numRows
4 val n = x.numCols
5
6 val (y_zeros, y_ones, mu0_num, mu1_num) = sum(0,m) { i =>
7 if (x.labels(i) == false) {
8 (1, 0, x(i), 0)
9 else {

10 (0, 1, 0, x(i))
11 }
12 }
13
14 val phi = 1./m * y_ones
15 val mu0 = mu0_num / y_zeros
16 val mu1 = mu1_num / y_ones
17
18 val sigma = sum(0,m) { i =>
19 if (x.labels(i) == false) {
20 ((x(i)-mu0).trans).outer(x(i)-mu0)
21 }
22 else {
23 ((x(i)-mu1).trans).outer(x(i)-mu1)
24 }
25 }

(a) OptiML code (b) MATLAB code

Figure 2: Side-by-side comparison of OptiML and MATLAB code for Gaussian Discriminant Analysis (GDA).

benefit parallelism; all accesses inside their closures must be dis-
joint (i.e. only access the ith element of any data structure). This
allows them to be trivially parallelized using chunking and for lo-
cality to be preserved within the chunks. Because this corresponds
to the great majority of ML use-cases, we have not found this re-
striction to be unduly constraining. A general-purpose language or
compiler might provide constructs with similar restrictions (e.g.
parfor), but cannot provide practical guidance on when to use them
or require that they be used.

Finally, OptiML currently supports two dynamic, domain-
specific optimizations[10]. We evaluate the benefit of these opti-
mizations in Section 4. We briefly describe them below:

• Relaxed Dependencies: in some iterative applications, there is
limited data parallelism. However, when the algorithm is robust
to minor perturbations, dependencies can be relaxed to provide
more task parallelism at the cost of a marginal loss in accuracy.
OptiML supports a run-time configurable relaxation percent-
age. untilconverged is an example of a relaxable operation; if it
is relaxed, some number of iterations are allowed to run in par-
allel and intentionally race. OptiML relaxes operations by not
registering the dependency with Delite.

• Best Effort Computations: in the same vein as relaxed depen-
dencies, it is not strictly necessary to execute every computa-
tion to achieve acceptable results in ML. To exploit this, Op-
tiML provides data structures with “best effort” semantics. The
semantics are defined in the DSL by various policies that the
DSL user can choose from. This optimization can reduce total
execution time and sequential overhead in some applications,
resulting in better single-threaded performance as well as scal-
ing.

We are developing a prototype version of OptiML using poly-
morphic embedding with Scala[9]. Polymorphic embedding allows

a library to directly analyze and transform programs written using
the library. This will remove the need for a compiler plugin and
allow future versions of OptiML to perform static optimizations as
well.

3. Delite: A Framework for Parallelizing DSLs
Constructing a new DSL is a difficult process in general. Delite sig-
nificantly simplifies this process by providing a shared framework
and runtime to implement and execute implicitly parallel DSLs.
Each DSL that utilizes the Delite framework inherits the Delite ex-
ecution model which provides the capability of executing on het-
erogeneous hardware.

3.1 A deferred execution model
Delite’s execution model enables implicit parallelization of appli-
cations by providing facilities for deferral of method execution.
Each method invocation can be packaged as a Delite op and submit-
ted to the Delite runtime. Ops encode their immediate dependencies
which allows the runtime to build a dynamic execution graph.

To illustrate the steps in execution, consider the simple applica-
tion code snippet written using OptiML shown in Figure 3. The ap-
plication thread executes sequentially (Figure 3a). However, each
call to the plus and times methods returns immediately after sub-
mitting its op to the runtime. These ops encode any dependen-
cies on other data objects. A Matrix proxy (this object implements
the Matrix interface but has no valid data elements) is returned as
the result of the method invocation (Figure 3b). The application is
oblivious to the fact that computation is deferred and “runs-ahead”
allowing more ops to be submitted. The submitted ops form a dy-
namic task graph (Figure 3c). Given a program’s task graph, the
runtime system is able to target a variety of parallel architectures
automatically (Figure 3d). Independent parts of the task graph are
scheduled to run in parallel and data movement is minimized with a
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Figure 3: Delite application execution overview.

scheduling algorithm that takes communication costs into account.
Therefore, Delite automatically provides implicit task parallelism
for each DSL at the operation granularity that the DSL defines. Fur-
thermore, data-parallel tasks can be further decomposed into mul-
tiple independent tasks yielding more parallelism.

Each Delite op returns a proxy, which unlike most implementa-
tions of futures, is transparent to the caller. The proxy has the same
return type as a concrete result, and can be used interchangeably
with other proxies and concrete instances. This allows a DSL user
to write code that is oblivious to the underlying execution model.
Figure 4 shows the Delite class diagram for the Vector object in the
OptiML DSL. A Scala trait is similar to a Java interface. Here,
Vector[T] is the only type the DSL user interacts with. In this ex-
ample the data reference in VectorImpl will initially be null upon
creation and the VectorImpl object acts as a proxy. Once the op
responsible for the creation of the proxy completes execution, the
VectorImpl object acts as a concrete instance with its data reference
set to the concrete array containing the result. The force method in-
herited by Vector and all other DSL types enforces synchronization
when required, preventing data from being accessed before it ex-
ists. If a proxy result is required (e.g. due to a control dependency)
but is not yet ready, the proxy is implicitly forced to execute and
return a concrete result.

3.2 A framework for creating implicitly parallel DSLs
Delite allows DSL authors to integrate a DSL into the Delite run-
time by providing a framework of extendable types and interfaces,
the most important of which are the Delite op archetypes.

3.2.1 Delite ops
When defining a Delite op, the DSL author specifies its dependen-
cies and the return type of the proxy. Listing 2 shows how a simple
op can be written to subtract two vectors. Its input arguments, v1
and v2 (which may themselves be proxies), are added as depen-
dency edges on the task graph when this op is submitted to the
runtime. Although this op can be written in a data-parallel man-

1 protected[optiml] case class OP_-[A]
2 (v1: Vector[A], v2: Vector[A])
3 extends DeliteOP_SingleTask[Vector[A]](v1,v2) {
4
5 def task = {
6 if (v1.length != v2.length)
7 throw new IndexOutOfBoundsException
8 val result = Vector[A](v1.length)
9 for (k <- 0 until v1.length){

10 result(k) = v1(k) - v2(k)
11 }
12 result
13 }
14 }

Listing 2: An example sequential op in the OptiML DSL.

ner, for this example we use a simple sequential implementation
by extending DeliteOP_SingleTask. This type can be used for
any sequential task and requires only a task method, which will be
invoked by Delite when the op is executed. Data-parallel ops have
a richer interface that simplifies data decomposition and parallel
execution; these are described in Section 3.2.2.

The DSL author is free to package work into Delite ops however
he or she deems best. So far we’ve focused on how a method
call can be naturally translated into an op, but there are other
possibilities. The sum control structure in OptiML creates two
Delite ops, one to generate all the temporary results and another
to perform the final summation.

3.2.2 Data-parallel operations
Delite exposes data-parallelism by providing support for vari-
ous data decomposition patterns. The framework provides data-
parallel op archetypes as classes that can be extended. Some of the
currently supported archetypes include op_map, op_reduce and
op_zipWith. Each op operates on a DeliteCollection, which
is a trait that each collection-based DSL type implements. This



trait DeliteDSLType[T]

final def force: T = { ... }

trait DeliteCollection[T]

def size: Int
def chunk(start: Int, 
          end: Int) : Iterator[T]
def dc_apply(n: Int) : T
def dc_update(n: Int, x: T)

trait GPUableCollection[T]

def gpu_data: Array[T]
var shipToGPU: Boolean = true

trait Vector[T]

def length: Int 
def size = length
def +(v: Vector[T]) =
  delite.defer(OP_plus(this, v))
def *(v: Vector[T]) =
  delite.defer(OP_times(this, v))

class VectorImpl[T]

var data: Array[T] = null
def length = data.length
def gpu_data = data
def dc_apply(n: Int) = data(n)
def dc_update(n: Int, x: T) {
  data(n) = x
}

Figure 4: Class diagram of the OptiML Vector class.

16 protected[optiml] case class OP_-[A]
17 (val collA: Vector[A], val collB: Vector[A],
18 val out: Vector[A])
19 extends DeliteOP_ZipWith2[A,A,A,Vector] {
20
21 def func = (a,b) => a - b
22 }

Listing 3: An example data-parallel op in the OptiML DSL.

trait and its implementation for OptiML’s Vector is shown in Fig-
ure 4. The DSL author provides data-parallel ops by extending one
of the archetypes in a very similar manner as a sequential task.
In the data-parallel case, however, rather than providing the task
to be executed, the DSL author simply provides the function to be
performed. Listing 3 shows how the same subtraction op from List-
ing 2 can be written to obtain automated data-parallel execution.

Delite is responsible for sizing and scheduling the chunks of a
DeliteCollection, allowing the runtime to adapt the needs of the
application to the available resources in the system. DeliteCollection
provides Delite with a flat, uniform interface to the elements of
arbitrary data structures. This allows the DSL author to encode
domain-specific decompositions. Specifically, the DSL author must
implement a size and chunk method for the collection. As the name
implies, size is the total number of elements of the collection. chunk
takes two indices and returns an iterator over the requested range.
The DSL author is free to construct the iterator in any way, and can
therefore optimize the decomposition for locality without Delite
knowing anything about the underlying data structure. For array-
based collections, Delite maximizes performance by iterating over
the array elements directly utilizing flat read and write methods
(dc_apply and dc_update) that the DSL author implements. In ad-
dition, primitive array-based collections can choose to implement
the GPUableCollection interface which allows Delite to manage
shipping the op’s corresponding CUDA kernel to the GPU. The
details of Delite’s GPU support are discussed in Section 3.3.2. All
data-parallel ops in Delite maintain the illusion of atomic execu-
tion, so the DSL author does not need to worry about the case of a
partially complete data-parallel operation.

3.2.3 Handling side effects
In the preceding discussion of the Delite execution model we have
implicitly assumed all ops are functionally pure (side-effect free).
However, Delite also allows ops that mutate the state of DSL ob-
jects. Delite deals with the possibility of side effects and potential
race conditions by restricting, tracking and isolating mutating op-
erations. First, ops are restricted to only mutate the state of DSL
objects. This restriction combined with the fact that all op inputs
are either primitives (immutable) or DSL objects prevents data con-
sumed by ops to be mutated arbitrarily. Next, any op that mutates
data or has side effects must explicitly declare the object(s) it is go-
ing to mutate. The DSL author provides this information using the
op interface in essentially the same way as declaring inputs. Finally,
using these declarations Delite adds the anti-dependencies created
by these mutating ops as it builds up the task graph and enforces se-
quential correctness at execution time by honoring these additional
edges in the task graph. This mechanism allows Delite to support
fast, mutating ops and avoid costly copy-by-value operations.

3.2.4 Assisting GPU code generation
In order for the Delite runtime to target a GPU device automati-
cally, the DSL must provide a corresponding CUDA kernel for each
op that the DSL wants to be shipped to the GPU. In the case of reg-
ular operations this task is simplified by automatic code generation
from Scala code to CUDA code. This is feasible due to restricted
semantics: the op must use disjoint memory accesses that allow
it to be transformed into a data-parallel operation in a straightfor-
ward way. The DSL author can mark each op for which he or she
wishes Delite to generate a CUDA kernel using the @GPU annota-
tion. A compiler plugin is then used to map the regular Scala code
to CUDA. For ops that are irregular or benefit greatly from hand
optimization, the DSL author must provide an appropriate CUDA
kernel.

3.3 A heterogeneous parallel runtime
We now turn our attention to how Delite executes ops on hetero-
geneous parallel hardware. The current version of Delite supports
execution on multiple CPUs and a GPU in a single machine. We
plan to expand to supporting clusters in the near future as well as
other accelerators as they become available.



3.3.1 Scheduling
Delite schedules ops to run from the window of currently deferred
ops, honoring the dependencies and anti-dependencies present in
the task graph. Ops are scheduled using a low-cost clustering
heuristic in order to minimize communication costs among ops
as well as scheduling overhead. Data-parallel ops are submitted to
the runtime as a single op and later split into the desired number
of op chunks. The number of chunks is chosen at scheduling time
based on the size of the collection and the availability of hardware
resources in the system. When scheduling op chunks, the locality
concern of the scheduler is modified to consider the dependencies
among individual chunks of the op input and output data structures
rather than the objects as a whole. Scheduled ops are enqueued
to run on the selected resource and perform a final safety check
immediately before executing to ensure all dependencies and anti-
dependencies have been satisfied at that time.

3.3.2 Supporting GPU execution
Unlike other environments such as MATLAB which require non-
trivial user effort to explicitly mark operations and data structures
that should be shipped to the GPU, Delite schedules onto CPU and
GPU resources in a way that is completely transparent to the user,
allowing a single version of the application source code to target ei-
ther execution environment. The DSL author determines which ops
are appropriate for the GPU and implements an additional inter-
face that allows Delite to manage shipping the op to the GPU. The
DSL author provides a CUDA kernel for each op as described in
Section 3.2.4. The interface also allows the DSL author to disable
GPU execution of the op when desired (e.g., when the dataset is
very small). The GPU manager can override this hint when locality
concerns dictate that poor computation performance is preferable
to high communication cost.

In order to support automated GPU execution, Delite imple-
ments a memory manager for each GPU device in addition to all
the facilities it provides for CPU execution. The entire main mem-
ory of the device is pre-allocated at startup and then managed as a
cache by Delite at run-time. When ops are scheduled for execution
onto the GPU, Delite ships the corresponding CUDA kernel to the
GPU device and automatically injects the required memory trans-
fers if all of the op’s inputs are not currently in the device cache.
All data transferred to the device remains there for reuse until the
CPU requires a result. Ops that merely produce temporary results
may never return data back to the CPU. This optimization fits nat-
urally into our model of DSL objects that only contain valid data
upon requirement. When data created by or mutated by the GPU
is required by the CPU, the GPU memory manager automatically
transfers the appropriate data back to the CPU main memory. Fi-
nally, if the CPU performs a mutating operation the GPU cache
copy (if one exists) is invalidated.

4. Experimental Analysis
In this section, we present performance results for a set of machine
learning applications written in OptiML and running on Delite.
Each application is written without any explicit parallelization.
We compare our results to reference implementations written in
MATLAB, including GPU implementations that use either MAT-
LAB 7.11’s beta support or AccelerEyes’s Jacket [2]. We also show
how each application scales on a highly threaded system and ana-
lyze what limits the application’s scalability. We conclude by show-
ing the impact of the domain-specific optimizations described in
Section 2 on performance.

4.1 Methodology
We implemented four versions of each application: an OptiML
version, a MATLAB version, a MATLAB version using MAT-
LAB 7.11’s GPU constructs, and a MATLAB version using Jacket’s
GPU constructs. We use the same OptiML application code to run
on multiple CPUs or on a combination of CPU+GPU; we use a
run-time configuration option to enable or disable shipping Op-
tiML ops that have corresponding GPU kernels to the GPU device.
The MATLAB versions are algorithmically identical to the Op-
tiML versions, but we make a reasonable effort to vectorize and
parallelize the MATLAB code. For MATLAB parallelization, we
used the parallel computing toolbox (specifically the parfor con-
struct). When both vectorization and parallelization are possible for
a particular loop, we choose whichever method yields the fastest
running time at the highest processor count. For the GPU version
of the MATLAB applications, we offloaded all GPU-supported op-
erations that were computationally intensive. Jacket supports more
operations than MATLAB, such as matrix and vector indexing, and
we took advantage of those.

We present results on two machines with significantly differ-
ent characteristics. The performance and optimization experiments
are run on a Dell Precision T7500n with two quad-core Intel Xeon
X5550 2.67 GHz processors. Each core has 2-way hyperthreading
for a total of 16 hardware thread contexts. It has 24GB of RAM and
an NVIDIA GTX 275 GPU. This system is representative of cur-
rently available high performance client machines. The scalability
experiments are run on a Sun UltraSPARC T2+ with four 8-core
1.16 GHz processors. Each core has 8-way multithreading for a
total of 256 hardware threads. It has 128 GB of RAM. Although
the T2+’s single-threaded performance is much slower than the
X5550’s, its large number of hardware threads and greater mem-
ory bandwidth make it much more suited for studying scalability at
high thread counts.

We ran our experiments using Sun’s Java SE Runtime Envi-
ronment 1.6.0_16-b01 and the HotSpot 64-bit server VM with de-
fault options. For each experiment we time the computation part of
the application, ignoring initialization steps. We run each applica-
tion, including initialization steps, 10 times to warm up the JIT and
smooth out fluctuations due to GC. We report the average time of
the last five executions. Table 1 presents the applications used in
our study. These applications all come from the machine learning
domain.

4.2 Performance comparison
We begin by comparing the performance of the various versions of
our machine learning applications running on the Intel-based sys-
tem. The results of this experiment are shown in Figure 5. The fig-
ure shows execution time normalized to the OptiML version run-
ning in sequential mode without any Delite overheads (OptiML ops
are not deferred in this case, but instead are executed as they are
encountered). We discuss issues relating to the scalability of each
application in the next subsection. Single-threaded performance of
the OptiML version of our applications is better than MATLAB
in most cases. The MATLAB parallel constructs use MPI, which
adds significant overhead. To measure the impact of these paral-
lel overheads on single-threaded performance, we have written and
run sequential MATLAB versions of our applications and found
that OptiML, including Delite overheads, matches or exceeds se-
quential MATLAB performance. Although MATLAB scripts are
interpreted, linear algebra operations utilize native BLAS libraries
under the hood. Therefore in applications that are largely composed
of matrix and vector operations, such as RBM, the single-threaded
MATLAB version performed comparably to a C implementation
also calling BLAS functions as well as to the OptiML implementa-
tion. Applications requiring more loops, conditionals, and pointer
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Figure 5: Execution time of the various versions of our applications normalized to OptiML running in sequential mode. Speedup numbers
are reported on top of each bar.

chasing, such as LBP, exhibited worse single-threaded performance
in MATLAB compared to OptiML largely due to interpretive over-
heads.

In all applications except for RBM, OptiML outperforms the
explicitly parallelized MATLAB versions. RBM has several fine-
grained vector operations for which MATLAB uses highly opti-
mized BLAS implementations. We are adding support for more
fine-grained BLAS implementations within OptiML to close the
gap. The parallel MATLAB version of k-means exhibited poor per-
formance at all thread counts, so we opted to use a vectorized ver-
sion instead. This is an example of the difficult and unclear trade-
offs required to get scalable performance with MATLAB. LBP is
an example of an application that is not well-suited to MATLAB.
One possible implementation that exploits parallelism required a
great degree of pointer indirection which is slow in MATLAB. Our
chosen implementation removes pointer indirection by storing mes-
sages in a single shared array. This yields better performance but

eliminates the ability to parallelize the application safely using par-
for.

We now compare the performance of our applications running
on a combination of CPU and GPU resources. GDA and RBM
achieve good speedups compared to the CPU-only version. This
is due to two factors: first, these applications do not require fre-
quent synchronization between the CPU and GPU. Second, they
use large matrices with regular memory access patterns. SVM is
similar except that the CPU and GPU must exchange data on every
iteration of the convergence loop, resulting in significantly worse
performance. The Delite GPU manager (with input from the DSL)
dynamically determines which ops should be shipped to the GPU
to maximize the overall performance. This determination is at the
granularity of individual operations. This results in improved per-
formance by avoiding the overhead of executing small kernels on
the GPU. In contrast, the MATLAB and Jacket GPU implementa-
tions require the application to explicitly specify which data struc-



 

 

 

 

 

 

 

 

 

 

 

 

 

 

NAME DESCRIPTION 
PERFORMANCE 
COMPARISON 

INPUT 

SCALABILITY 
TEST INPUT 

Gaussian 
Discriminant 

Analysis 
(GDA) 

Generative learning algorithm 
for modeling the probability 
distribution of a set of data as 
a multivariate Gaussian 

1,200x1,024  
matrix 

1,200x512 
matrix 

Loopy Belief 
Propagation 

(LBP) 

Graph-based inference 
algorithm using message-
passing 

23,768 edges 
3,630 nodes 

23,768 edges 
3,630 nodes 

Naive Bayes 
(NB) 

Fast, low-work supervised 
learning algorithm for 
classification 

25,000x1,448  
matrix 

12,000x1,448 
matrix 

K-means 
Clustering 
(K-means) 

Unsupervised learning 
algorithm for finding similar 
clusters in a dataset 

262,144x3 
matrix 

25,000x100 
matrix 

Support Vector 
Machine 

(SVM) 

Optimal margin classifier, 
implemented using the 
Sequential Minimal 
Optimization (SMO) algorithm 

800x1,448  
matrix 

800x1,448  
matrix 

Restricted 
Boltzmann 

Machine 
(RBM) 

Stochastic recurrent neural 
network, without connections 
between hidden units 

2,000  
Hidden Units  

2,000 
Dimensions 

2,000  
Hidden Units  

2,000  
Dimensions 

Table 1: Applications used for experimental analysis.
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Figure 6: Scalability of our selected OptiML applications running
in a highly threaded system. Speedup is measured relative to Op-
tiML running in sequential mode.

tures reside on the GPU; all subsequent operations on GPU data
structures must occur on the GPU. NB and k-means contain loops
with regular memory access patterns that can easily be translated to
CUDA kernels. This results in substantially improved performance
over the MATLAB implementations, which only ship individual
MATLAB operations. Finally, LBP is a low dimensional, highly
irregular graph algorithm and is not easily mapped to GPUs.

4.3 Scalability study
Figure 6 shows the result of running our OptiML applications in a
highly threaded environment. The UltraSPARC T2+ has a total of
64 integer ALUs and 32 floating point units. Hence, most of the
applications are limited to a maximum speedup of around 64. Most
applications also suffer from low arithmetic intensity, which as we
noted earlier is a characteristic of the machine learning domain,
leading to sub-linear speedups. We next look at what limits each
application’s scalability in detail:

Gaussian Discriminant Analysis (GDA): GDA scaling is lim-
ited in two ways. While algorithmically the program is both very
parallel and regular, low arithmetic intensity causes the memory
system to become a bottleneck. Additionally, the final reduction

phase in the application causes greater serial overhead at high
thread counts.

Naive Bayes (NB): NB also suffers from low arithmetic inten-
sity. It simply streams through a large dataset and collects some
statistics. This amounts to very little computation and while we
stream through chunks of the dataset in parallel, we are ultimately
limited again by the memory system.

K-means Clustering: k-means, unlike many of our applica-
tions, has high arithmetic intensity. The algorithm is limited by the
number of clusters and the dimensionality of the training data. We
chose a representative dataset containing a large number of training
samples and clusters which results in good scalability.

Loopy Belief Propagation (LBP): LBP is a graph-based algo-
rithm characterized by irregular computation. Delite uses dynam-
ically load-balanced tasks for the parallel work, which provides
much better performance than a static schedule. However, LBP is
limited by the fact that a single node in the graph can become a
bottleneck if it has a significant portion of the total number of mes-
sages to be sent in an iteration.

Support Vector Machine (SVM): Our SVM implementation
is a simplified version of a widely used algorithm called Sequential
Minimal Optimization (SMO). SMO is an iterative algorithm with
loop carried dependencies across iterations. Within each iteration,
there is limited fine grained data-parallelism that does not scale
well. Beyond 32 threads, SVM runs out of parallel work and is
limited by Amdahl’s law.

Restricted Boltzmann Machine (RBM): RBM is similar to
SVM in that it is iterative with dependencies carried across iter-
ations. However, each iteration is dominated by large matrix multi-
plications and thus RBM exhibits good scalability.

4.4 The benefit of domain-specific optimizations
In Section 2, we described two domain-specific optimizations that
OptiML supports: best effort computation and relaxed dependen-
cies. Figure 7 shows the improved performance that results from
applying these optimizations to k-means and SVM. For k-means,
we used a converging best effort policy that dropped distance calcu-
lations that were unchanged in the previous n iterations. We show
results for three different values of n, each of which results in a
different trade-off between performance and accuracy. The error
we report is the average percentage difference in the final cluster
locations. For this experiment, we clustered a 262144 pixel RGB
image, and the best effort optimization drastically reduces compu-
tation time with only minor differences in the discovered clusters.

As we mentioned in the previous section, the SMO implemen-
tation of SVM has inter-loop dependencies that prevent paralleliza-
tion across iterations. In this experiment, we used a smaller training
set with less available data parallelism. However, we enabled the
relax dependency optimization in OptiML, which allows two iter-
ations to run in parallel inside the untilconverged implementation
(note that no changes are required in the application code). This op-
timization is able to improve performance despite unprotected races
to shared state because the algorithm is probabilistic and relatively
robust to this kind of manipulation. The iterations frequently access
disjoint parameters and SMO is ultimately able to complete faster
with less than a 1% loss in classification accuracy.

5. Related Work
Delite builds upon a variety of previously published work in
domain-specific languages and parallel programming:

Domain-specific languages and optimizations: A good start-
ing point for those interested in domain-specific languages is an
annotated bibliography by Deursen et al.[35]. Mernik et al.[26] pro-
pose a pattern-based framework to help with deciding whether or
not to invest in developing a domain-specific language and how to
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go about doing so. We adopt DSLs mainly for the AVOPT pattern:
domain specific analysis, verification, optimization, parallelization,
and transformation. Frameworks for developing domain-specific
languages have also been proposed[14, 21]. These frameworks
mostly help authors develop external DSLs and provide tools that
help in the construction and transformation of an abstract syntax
tree. We adopt an approach similar to that presented by Hudak[17]
and embed our DSLs directly into a host language. Previous work
has also shown the benefit of using domain knowledge to enhance
the performance of applications: Menon et al demonstrate the ben-
efits of applying high level transformations to MATLAB code[25]
and show performance gains in both interpreted and compiled code.
Guyver et al[15] presents a mechanism for annotating library meth-
ods with domain-specific knowledge which yields significant im-
provement in performance. CodeBoost[4] allows for user-defined
rules that are used to transform the program using domain knowl-
edge. In contrast, Delite allows DSL developers to encode dynamic
domain-specific optimizations.

Heterogeneous programming: There have been proposals to
help programmers target heterogeneous systems. Some proposals
such as EXOCHI[36] and OpenCL[33] provide abstractions that al-
low the programmer to explicitly manage and target any available
accelerator. This approach reduces the ad hoc nature of directly us-
ing vendor drivers and APIs for each device. Merge[22] builds on
top of EXOCHI by providing a framework for associating a kernel
variant with a particular accelerator and shifting the responsibility
of selecting the appropriate kernel to the runtime. These propos-
als however, are still too low level for a mass market programming
model. Nevertheless, we believe that such proposals are extremely
useful when used by the runtime to dispatch work to the differ-
ent heterogeneous devices. Harmony[13], a recent proposal, rea-
sons about the whole program by building a data dependency graph
and then scheduling independent kernels to run in parallel. Har-
mony can also automatically select from different variants of each
deferred kernel. However, Harmony does not apply any domain-
specific transformations or perform automatic data-decomposition
of the program kernels.

Data-parallel programming models and libraries: This ap-
proach to parallel programming hides the complexity of the un-
derlying system by only exposing the programmer to a data-
parallel API. Examples of this approach include RapidMind[23],
PeakStream[30], and Accelerator[32]. These APIs mostly consist
of vector and array primitives which map well to SIMD-based ac-
celerators and work well for many algorithms. However, they are
inadequate for parallel algorithms that are irregular and require

a more general task-based decomposition. Delite is informed by
these previous proposals in the way it handles data-parallel ops.
Dryad[19], a distributed execution engine for very coarse-grained
data-parallel operations, targets clusters. Delite is similar in that
it translates an application to an execution graph prior to map-
ping it to particular system configuration. Unlike Delite, Dryad
applications need to explicitly construct this execution graph.
DryadLINQ[20] attempts to overcome the complexity of execution
graph construction and allows a programmer to write LINQ[24]
programs that are automatically translated to a Dryad execution
graph. In this case, LINQ could be considered as the DSL and
Dryad as the runtime. Delite differentiates itself by adding facil-
ities for authoring implicitly parallel DSLs, targets finer grained
on-chip parallelism and exploits task parallelism.

Parallel programming languages: Parallel programming lan-
guages focus on two main categories: explicit and implicit par-
allelism. Explicitly parallel languages rely on the programmer to
identify parallel work; notable examples include Parallel Haskell[34],
Cilk[6], X10[12] and Chapel[11]. Requiring programmers to ex-
plicitly parallelize their code may have an adverse effect on the
productivity goal, and it is often difficult to achieve scalable per-
formance using explicit constructs. Languages that support implicit
parallelization often rely on data-parallel operations on parallel
collections. These include NESL[5], High Performance Fortran[1],
X10 and Chapel. One could also argue that stream programming
languages such as Brook[7] and to some extent CUDA[27] are
data-parallel languages with streams being synonymous to a paral-
lel collection of records. OptiML provides the same facilities, but
uncovers coarse-grained parallelism using domain knowledge and
adds implicit task parallelism through Delite.

6. Conclusion
With the increasing dominance of heterogeneous parallel systems,
applications must be able to leverage parallelism to improve per-
formance. To enable average application developers to exploit
parallelism, a mass market parallel programming model should
shield these developers from parallel programming complexity. To
achieve this, we proposed a domain-specific approach to parallel
programming that provides application developers with familiar,
high-level semantics while still delivering high performance and
scalability through implicit task and data parallelism. DSLs also
allow domain-specific knowledge to be leveraged to optimize pro-
gram execution and data decomposition. Finally, DSL methods
are a convenient abstraction for targeting heterogeneous platforms
since they can be translated to different target processing nodes.

As an example of this approach, we introduced OptiML, a DSL
for machine learning. OptiML is built using Delite, a framework
and runtime that simplifies developing implicitly parallel DSLs
that target heterogeneous platforms. We demonstrated how domain
knowledge can be used to extract parallelism and to optimize appli-
cation code. We presented results showing that OptiML can outper-
form explicitly parallelized MATLAB on a set of common machine
learning applications. Using a single version of application source
code, running on a combination of CMP and GPU resources, Op-
tiML exhibits robust speedups and scalability up to 59x on 128
threads. OptiML compares favorably to MATLAB, achieving av-
erage (geometric mean) performance improvements of 3.4x on 8
cores and 5.1x on GPU (MATLAB + Jacket).
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