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Abstract
We propose a concurrent relaxed balance AVL tree algorithm that
is fast, scales well, and tolerates contention. It is based on opti-
mistic techniques adapted from software transactional memory, but
takes advantage of specific knowledge of the the algorithm to re-
duce overheads and avoid unnecessary retries. We extend our algo-
rithm with a fast linearizable clone operation, which can be used
for consistent iteration of the tree. Experimental evidence shows
that our algorithm outperforms a highly tuned concurrent skip list
for many access patterns, with an average of 39% higher single-
threaded throughput and 32% higher multi-threaded throughput
over a range of contention levels and operation mixes.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features – Concurrent program-
ming structures; E.1 [Data Structures]: Trees; D.1.3 [Program-
ming Techniques]: Concurrent Programming – Parallel program-
ming

General Terms Algorithms, Performance

Keywords Optimistic Concurrency, Snapshot Isolation

1. Introduction
The widespread adoption of multi-core processors places an in-
creased focus on data structures that provide efficient and scal-
able multi-threaded access. These data structures are a fundamen-
tal building block of many parallel programs; even small improve-
ments in these underlying algorithms can provide a large perfor-
mance impact. One widely used data structure is an ordered map,
which adds ordered iteration and range queries to the key-value
association of a map. In-memory ordered maps are usually imple-
mented as either skip lists [19] or self-balancing binary search trees.

Research on concurrent ordered maps for multi-threaded pro-
gramming has focused on skip lists, or on leveraging software
transactional memory (STM) to manage concurrent access to
trees [3, 12]. Concurrent trees using STM are easy to implement
and scale well, but STM introduces substantial baseline overheads
and performance under high contention is still an active research
topic [2]. Concurrent skip lists are more complex, but have depend-
able performance under many conditions [9].
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Figure 1. a. Hand-over-hand optimistic validation. b. Finding the
successor for deletion.

In this paper we present a concurrent relaxed balance AVL tree.
We use optimistic concurrency control, but carefully manage the
tree in such a way that all atomic regions have fixed read and
write sets that are known ahead of time. This allows us to reduce
practical overheads by embedding the concurrency control directly.
It also allows us to take advantage of algorithm-specific knowledge
to avoid deadlock and minimize optimistic retries. To perform
tree operations using only fixed sized atomic regions we use the
following mechanisms: search operations overlap atomic blocks as
in the hand-over-hand locking technique [5]; mutations perform
rebalancing separately; and deletions occasionally leave a routing
node in the tree. We also present a variation of our concurrent
tree that uses lazy copy-on-write to provide a linearizable clone
operation, which can be used for strongly consistent iteration.

Our specific contributions:

• We describe hand-over-hand optimistic validation, a concur-
rency control mechanism for searching and navigating a binary
search tree. This mechanism minimizes spurious retries when
concurrent structural changes cannot affect the correctness of
the search or navigation result (Section 3.3).

• We describe partially external trees, a simple scheme that sim-
plifies deletions by leaving a routing node in the tree when
deleting a node that has two children, then opportunistically un-
linking routing nodes during rebalancing. As in external trees,
which store values only in leaf nodes, deletions can be per-
formed locally while holding a fixed number of locks. Partially
external trees, however, require far fewer routing nodes than
an external tree for most sequences of insertions and deletions
(Section 3.5).

• We describe a concurrent partially external relaxed balance
AVL tree algorithm that uses hand-over-hand optimistic valida-
tion, and that performs all updates in fixed size critical regions
(Section 3).

• We add copy-on-write to our optimistic tree algorithm to pro-
vide support for an atomic clone operation and snapshot isola-
tion during iteration (Section 3.10).
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• We show that our optimistic tree outperforms a highly-tuned
concurrent skip list across many thread counts, contention lev-
els, and operation mixes, and that our algorithm is much faster
than a concurrent tree implemented using an STM. Our algo-
rithm’s throughput ranges from 13% worse to 98% better than
the skip list’s on a variety of simulated read and write work-
loads, with an average multi-threaded performance improve-
ment of 32%. We also find that support for fast cloning and
consistent iteration adds an average overhead of only 9% to our
algorithm (Section 5).

2. Background
An AVL tree [1] is a self-balancing binary search tree in which the
heights of the left and right child branches of a node differ by no
more than one. If an insertion to or deletion from the tree causes
this balance condition to be violated then one or more rotations are
performed to restore the AVL invariant. In the classic presentation,
nodes store only the difference between the left and right heights,
which reduces storage and update costs. Balancing can also be
performed if each node stores its own height.

The process of restoring the tree invariant becomes a bottleneck
for concurrent tree implementations, because mutating operations
must acquire not only locks to guarantee the atomicity of their
change, but locks to guarantee that no other mutation affects the
balance condition of any nodes that will be rotated before proper
balance is restored. This difficulty led to the idea of relaxed balance
trees, in which the balancing condition is violated by mutating
operations and then eventually restored by separate rebalancing
operations [10, 14, 16]. These rebalancing operations involve only
local changes. Bougé et al. proved that any sequence of localized
application of the AVL balancing rules will eventually produce a
strict AVL tree, even if the local decisions are made with stale
height information [6].

Binary search trees can be broadly classified as either internal or
external. Internal trees store a key-value association at every node,
while external trees only store values in leaf nodes. The non-leaf
nodes in an external tree are referred to as routing nodes, each of
which has two children. Internal trees have no routing nodes, while
an external tree containing n values requires n leaves and n − 1
routing nodes.

Deleting a node from an internal tree is more complicated than
inserting a node, because if a node has two children a replacement
must be found to take its place in the tree. This replacement is the
successor node, which may be many links away (y is x’s successor
in Figure 1.b). This complication is particularly troublesome for
concurrent trees, because this means that the critical section of a
deletion may encompass an arbitrary number of nodes. The orig-
inal delayed rebalancing tree side-stepped this problem entirely,
supporting only insert and search [1]. Subsequent research on
delayed rebalancing algorithms considered only external trees. In
an external tree, a leaf node may always be deleted by changing the
link from its grandparent to point to its sibling, thus splicing out its
parent routing node (see Figure 7.b).

While concurrent relaxed balance tree implementations based
on fine-grained read-write locks achieve good scalability for disk
based trees, they are not a good choice for a purely in-memory
concurrent tree. Acquiring read access to a lock requires a store
to a globally visible memory location, which requires exclusive
access to the underlying cache line. Scalable locks must therefore
be striped across multiple cache lines to avoid contention in the
coherence fabric [15], making it prohibitively expensive to store a
separate lock per node.

Optimistic concurrency control (OCC) schemes using version
numbers are attractive because they naturally allow invisible read-
ers, which avoid the coherence contention inherent in read-write

locks. Invisible readers do not record their existence in any glob-
ally visible data structure, rather they read version numbers updated
by writers to detect concurrent mutation. Readers ‘optimistically’
assume that no mutation will occur during a critical region, and
then retry if that assumption fails. Despite the potential for wasted
work, OCC can provide for better performance and scaling than
pessimistic concurrency control [20].

Software transactional memory (STM) provides a generic im-
plementation of optimistic concurrency control, which may be used
to implement concurrent trees [12] or concurrent relaxed balance
trees [3]. STM aims to deliver the valuable combination of sim-
ple parallel programming and acceptable performance, but internal
simplicity is not the most important goal of a data structure library.1

For a widely used component it is justified to expend a larger en-
gineering effort to achieve the best possible performance, because
the benefits will be multiplied by a large number of users.

STMs perform conflict detection by tracking all of a transac-
tion’s accesses to shared data. This structural validation can reject
transaction executions that are semantically correct. Herlihy et al.
used early release to reduce the impact of this problem [12]. Early
release allows the STM user to manually remove entries from a
transaction’s read set. When searching in a binary tree, early re-
lease can mimic the effect of hand-over-hand locking for success-
ful transactions. Failed transactions, however, require that the en-
tire tree search be repeated. Elastic transactions require rollback in
fewer situations than early release and do not require that the pro-
grammer explicitly enumerate entries in the read set, but rollback
still requires that the entire transaction be reexecuted [8].

Skip lists are probabilistic data structures that on average pro-
vide the same time bounds as a balanced tree, and have good prac-
tical performance [19]. They are composed of multiple levels of
linked lists, where the nodes of a level are composed of a random
subset of the nodes from the next lower level. Higher lists are used
as hints to speed up searching, but membership in the skip list is
determined only by the bottom-most linked list. This means that
a concurrent linked list algorithm may be augmented by lazy up-
dates of the higher lists to produce a concurrent ordered data struc-
ture [9, 18]. Skip lists do not support structural sharing, so copy-
on-write cannot be used to implement fast cloning or consistent
iteration. They can form the foundation of an efficient concurrent
priority queue [21].

3. Our Algorithm
We present our concurrent tree algorithm as a map object that sup-
ports five methods: get, put, remove, firstNode, and succNode.
For space reasons we omit practical details such as user-specified
Comparators and handling of null values. The get(k) operation
returns either v, where v is the value currently associated with k,
or null; put(k, v) associates k and a non-null v and returns ei-
ther v0, where v0 is the previous value associated with k, or null;
remove(k) removes any association between k and a value v0, and
returns either v0 or null; firstNode() returns a reference to the
node with the minimal key; and succNode(n) returns a reference to
the node with the smallest key larger than n.key. The firstNode
and succNode operations can be used trivially to build an ordered
iterator. In Section 4 we will show that get, put, and remove are
linearizable [13]. We will discuss optimistic hand-over-hand lock-
ing in the context of get (Section 3.3) and partially external trees
in the context of remove (Section 3.5).

Our algorithm is based on an AVL tree, rather than the more
popular red-black tree [4], because relaxed balance AVL trees are

1 Here we are considering STM as an internal technique for implementing
a concurrent tree with a non-transactional interface, not as a programming
model that provides atomicity across multiple operations on the tree.
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1 class Node<K,V> {
2 volatile int height;
3 volatile long version;
4 final K key;
5 volatile V value;
6 volatile Node<K,V> parent;
7 volatile Node<K,V> left;
8 volatile Node<K,V> right;
9 ...

10 }

Figure 2. The fields for a node with key type K and value type V.

11 static long Unlinked = 0x1L;
12 static long Growing = 0x2L;
13 static long GrowCountIncr = 1L << 3;
14 static long GrowCountMask = 0xffL << 3;
15 static long Shrinking = 0x4L;
16 static long ShrinkCountIncr = 1L << 11;
17 static long IgnoreGrow = ~(Growing | GrowCountMask);

Figure 3. Version manipulation constants.

less complex than relaxed balance red-black trees. The AVL bal-
ance condition is more strict, resulting in more rebalancing work
but smaller average path lengths. Pfaff [17] characterizes the work-
loads for which one tree performs better than the other, finding no
clear winner. Our contributions of hand-over-hand optimistic vali-
dation and local deletions using partially external trees are also ap-
plicable to relaxed balance red-black trees. Lookup, insertion, up-
date, and removal are the same for both varieties of tree. Only the
post-mutation rebalancing (Section 3.6) is affected by the choice.

3.1 The data structure: Node
The nodes that compose our tree have a couple of variations from
those of a normal AVL tree: nodes store their own height rather than
the difference of the heights of the children; nodes for a removed
association may remain in the tree with a value of null; and nodes
contain a version number used for optimistic concurrency control.
Figure 2 shows the fields of a node. All fields except for key are
mutable. height, version, value, left, and right may only be
changed while their enclosing node is locked. parent may only
be changed while the parent node is locked (both the old and the
new parent must be locked). The delayed balancing of our tree is a
property of the algorithm, and is not visible in the type signature.

For convenience, the map stores a pointer to a root holder
instead of the root node itself. The root holder is a Node with
no key or value, whose right child is the root. The root holder
allows the implementation to be substantially simplified because it
never undergoes rebalancing, never triggers optimistic retries (its
version is always zero), and allows all mutable nodes to have
a non-null parent. The map consists entirely of the rootHolder
reference.

3.2 Version numbers
The version numbers used in our algorithm are similar to those
in McRT-STM, in which a reserved ‘changing’ bit indicates that
a write is in progress and the remainder of the bits form a
counter [20]. (Our algorithm separates the locks that guard node
update from the version numbers, so the changing bit is not over-
loaded to be a mutex as in many STMs.) To perform a read at time
t1 and verify that the read is still valid at t2: at t1 read the asso-
ciated version number v1, blocking until the change bit is not set;
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Figure 4. Two searching threads whose current pointer is involved
in a concurrent rotation. The node 18 grew, so T1’s search is not
invalidated. The node 20 shrank, so T2 must backtrack.

read the protected value x; then at t2 reread the version number v2.
If v1 = v2 then x was still valid at t2.

Our algorithm benefits from being able to differentiate between
the structural change to a node that occurs when it is moved down
the tree (shrunk) and up the tree (grown). Some operations are in-
validated by either shrinks or grows, while others are only invali-
dated by shrinks. We use a single 64-bit value to encode all of the
version information, as well as to record if a node has been unlinked
from the tree. There is little harm in occasionally misclassifying a
grow as a shrink, because no operation will incorrectly fail to in-
validate as a result. We therefore overlap the shrink counter and the
grow counter. We use the most significant 53 bits to count shrinks,
and the most significant 61 bits to count grows. This layout causes
a grow to be misclassified as a shrink once every 256 changes, but
it never causes a shrink to be misclassified as a grow. The bottom
three bits are used to implement an unlink bit and two change bits,
one for growing and one for shrinking (Figure 3).

3.3 Hand-over-hand optimistic validation: get(k)
If k is present in the map then get(k) must navigate from the
root holder to the node that holds k. If k is not present in the
tree then get must navigate to the node that would be k’s par-
ent if it were inserted. If no concurrency control is performed, a
search may be led astray by a concurrent rotation. The well-known
lock-based technique for handling this is hand-over-hand locking
(also known as spider locks, lock chaining, chain locking, . . . ),
which decreases the duration over which locks are held by releas-
ing locks on nodes whose rotation can no longer affect the cor-
rectness of the search [5]. With both exclusive locks or read-write
locks the root lock must be acquired by each accessor, making it a
point of contention. We use optimistic validation to guard critical
regions, chaining in a manner similar to hand-over-hand locking.
This avoids the scalability problems of the root lock while using
only fixed size critical regions (see Figure 1.a).

The key to hand-over-hand optimistic validation is to reason
explicitly about the implicit state of a search, which consists of an
open interval of keys that must either be absent from the entire tree
or present in the current subtree. Each time that the search process
performs a comparison and navigates downward, the interval is
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18 static Object Retry = new Object();
19
20 V get(K k) {
21 return (V)attemptGet(k, rootHolder, 1, 0);
22 }
23
24 Object attemptGet(
25 K k, Node node, int dir, long nodeV) {
26 while (true) {
27 Node child = node.child(dir);
28 if (((node.version^nodeV) & IgnoreGrow) != 0)
29 return Retry;
30 if (child == null)
31 return null;
32 int nextD = k.compareTo(child.key);
33 if (nextD == 0)
34 return child.value;
35 long chV = child.version;
36 if ((chV & Shrinking) != 0) {
37 waitUntilNotChanging(child);
38 } else if (chV != Unlinked &&
39 child == node.child(dir)) {
40 if (((node.version^nodeV) & IgnoreGrow) != 0)
41 return Retry;
42 Object p = attemptGet(k, child, nextD, chV);
43 if (p != Retry)
44 return p;
45 } } }

Figure 5. Finding the value associated with a k.

reduced. At all times the interval includes the target key, so if the
subtree ever becomes empty we can conclude that no node with
that key is present. The optimistic validation scheme only needs to
invalidate searches whose state is no longer valid.

If a search that was valid when it was at node n has since
traversed to a child node c of n, and the pointer from n to c has not
been modified, then the search is still valid, because the subtree has
not been changed. To prevent false invalidations we use separate
version numbers to track changes to n.left and n.right. We
reduce storage overheads by actually storing the version number
that protects the link from n to c in c.version. (This requires us
to traverse the link twice, once to locate the version number and
once as a read that is actually protected by OCC.) To successfully
navigate through a node, there must be a point where both the
inbound and outbound link are valid. This is accomplished by
validating the version number that protects the inbound link after
both the outbound link and its version number have been read.

A search may still be valid despite a change to a child link,
if every node in the tree within the computed bounds must still be
contained in the subtree. Consider the scenario in Figure 4, in which
a mutating thread T3 performs a rotation while two searches are in
progress. (We defer a discussion of the visible intermediate states
during rotation to Section 3.7.) T1’s search points to the node that
is raised by the rotation, which means that its implicit state is not
invalidated. Intuitively if a rotation ‘grows’ the branch rooted at a
node, then a search currently examining the node will not fail to
find its target. Conversely, if a rotation ‘shrinks’ the branch under a
node, then a search pointing to that node may falsely conclude that
a node is not present in the tree. In the latter case the implicitly
computed subtree bounds are incorrect. T2’s search points to a
shrinking node, which means that it must backtrack to node 14,
the previous level of the search. Changes to a child pointer may
also be ‘neutral’ if they preserve the range of the keys contained in
the subtree, as can occur during deletion.

Figure 5 shows the code for the get operation. The bulk of the
work is accomplished by attemptGet. attemptGet assumes that

46 V put(K k, V v) {
47 return (V)attemptPut(k, v, rootHolder, 1, 0);
48 }
49
50 Object attemptPut(
51 K k, V v, Node node, int dir, long nodeV) {
52 Object p = Retry;
53 do {
54 Node child = node.child(dir)
55 if (((node.version^nodeV) & IgnoreGrow) != 0)
56 return Retry;
57 if (child == null) {
58 p = attemptInsert(k, v, node, dir, nodeV);
59 } else {
60 int nextD = k.compareTo(child.key);
61 if (nextD == 0) {
62 p = attemptUpdate(child, v);
63 } else {
64 long chV = child.version;
65 if ((chV & Shrinking) != 0) {
66 waitUntilNotChanging(child);
67 } else if (chV != Unlinked &&
68 child == node.child(dir)) {
69 if (((node.version^nodeV) & IgnoreGrow)!=0)
70 return Retry;
71 p = attemptPut(k, v, child, nextDir, chV);
72 } } }
73 } while (p == Retry);
74 return p;
75 }
76 Object attemptInsert(
77 K k, V v, Node node, int dir, long nodeV) {
78 synchronized (node) {
79 if (((node.version^nodeV) & IgnoreGrow) != 0 ||
80 node.child(dir) != null)
81 return Retry;
82 node.setChild(dir, new Node(
83 1, k, v, node, 0, null, null));
84 }
85 fixHeightAndRebalance(node);
86 return null;
87 }
88 Object attemptUpdate(Node node, V v) {
89 synchronized (node) {
90 if (node.version == Unlinked) return Retry;
91 Object prev = node.value;
92 node.value = v;
93 return prev;
94 }
95 }

Figure 6. Inserting or updating the value associated with k.

the pointer to node was read under version number nodeV, and is
responsible for revalidating the read at Line 40 after performing
a validated read of the child pointer at Line 39. If there is no
child then the final validation of the traversal to node occurs on
Line 28. Note that Line 27’s access to the child is not protected, it
is merely used to gain access to the version number that protects
the inbound pointer. The hand-off of atomically executed regions
occurs between the child read and the final validation (Line 28).

attemptGet returns the special value Retry on optimistic fail-
ure, which triggers a retry in the outer call. get emulates the first
half of a hand-off by pretending to have followed a pointer to
rootHolder under version 0. get does not need a retry loop be-
cause the outer-most invocation cannot fail optimistic validation,
as rootHolder.version is always 0. IgnoreGrow is used to ig-
nore changes that grow the subtree, since they cannot affect the
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correctness of the search. We discuss the waitUntilNotChanging
method in Section 3.9.

Conceptually, the execution interval between reading the ver-
sion number at Line 35 and the validation that occurs in the re-
cursive invocation at Line 40 constitute a read-only transaction.
Each level of the attemptGet recursion begins a new transaction
and commits the transaction begun by its caller. Interestingly, we
can only determine retroactively whether any particular validation
at Line 40 was the final validation (and hence the commit) of the
atomic region. If a recursive call returns Retry the enclosing loop
will attempt another validation, which has the effect of extending
the duration of the transaction begun by the caller. This ‘resurrec-
tion’ of a transaction that was previously considered committed is
only possible because these atomic regions perform no writes.

3.4 Insertion and update: put(k, v)
The put operation may result in either an insertion or an update,
depending on whether or not an association for the key already is
present in the tree. It starts in exactly the same manner as get, be-
cause its first task is to identify the location in the tree where the
change should occur. We do not extract this common functionality
into a separate function, because during insertion we must perform
the last check of the hand-over-hand optimistic validation after a
lock on the parent has been acquired. Figure 6 shows the imple-
mentation of put.

If we discover that node.key matches the target key then we
can be trivially certain that any concurrent tree rotations will not
affect the ability of the search to find a matching node. This means
that on Line 90 of the attemptUpdate helper function we do not
need to examine node.version for evidence of shrinks, rather we
only verify that the node has not been unlinked from the tree. The
lock on a node must be acquired before it is unlinked, so for the
duration of attemptUpdate’s critical region we can be certain that
the node is still linked.

To safely insert a node into the tree we must acquire a lock on
the future parent of the new leaf, and we must also guarantee that
no other inserting thread may decide to perform an insertion of the
same key into a different parent. It is not sufficient to merely check
that the expected child link is still null after acquiring the parent
lock. Consider the tree b(a, d(·, e)), in which p(l, r) indicates that
l is the left child of p and r is the right child of p, · represents
a null child link, and the keys have the same ordering as the
name of their node. A put of c by a thread T1 will conclude
that the appropriate parent is d. If some other thread performs
a left-rotation at b then the tree will be d(b(a, ·), e), which may
cause a second thread T2 to conclude that the insertion should
be performed under b. If T2 proceeds, and then later performs
a double rotation (left at b, right at d) the resulting tree will be
c(b(a, ·), d(·, e)). To guard against sequences such as this, Lines 79
and 80 of attemptInsert perform the same closing validation
as in get. Any rotation that could change the parent into which k
should be inserted will invalidate the implicit range of the traversal
that arrived at the parent, and hence will be detected by the final
validation.

3.5 Partially external trees: remove(k)
Up until now we have only considered operations that require
locking a single node; removals are more difficult. In an internal
tree with no routing nodes, deletion of a node n with two children
requires that n’s successor s be unlinked from n.right and linked
into n’s place in the tree. Locating s may require the traversal of
as many as n.height − 1 links. In a concurrent tree the unlink
and relink of s must be performed atomically, and any concurrent
searches for s must be invalidated. Every node along the path from
n to s’s original location must be considered to have shrunk, and
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Figure 7. A sequence of two deletions in different types of trees.

96 V remove(K k) {
97 return (V) attemptRemove(k, rootHolder, 1, 0);
98 }
99 ... // attemptRemove is similar to attemptPut

100 boolean canUnlink(Node n) {
101 return n.left == null || n.right == null;
102 }
103 Object attemptRmNode(Node par, Node n) {
104 if (n.value == null) return null;
105 Object prev;
106 if (!canUnlink(n)) {
107 synchronized (n) {
108 if (n.version == Unlinked || canUnlink(n))
109 return Retry;
110 prev = n.value;
111 n.value = null;
112 }
113 } else {
114 synchronized (par) {
115 if (par.version == Unlinked || n.parent != par
116 || n.version == Unlinked)
117 return Retry;
118 synchronized (n) {
119 prev = n.value;
120 n.value = null;
121 if (canUnlink(n)) {
122 Node c = n.left == null ? n.right : n.left;
123 if (par.left == n)
124 par.left = c;
125 else
126 par.right = c;
127 if (c != null) c.parent = par;
128 n.version = Unlinked;
129 } } }
130 fixHeightAndRebalance(par);
131 }
132 return prev;
133 }

Figure 8. Removing k’s association, either by unlinking the node
or by converting it to a routing node.

A Practical Concurrent Binary Search Tree 5 2009/11/6



d

b e

a c

b

d
a

c e

f

d

g

c e

b

a
b

a c

f

e g

d b

a
a

a) b) c)

Figure 9. Local tree improvements: a. A right rotation of d. b. A right rotation of f over a left rotation of b. c. Unlink of the routing node b.

hence must be locked. This excessive locking negatively impacts
both performance and scalability.

Previous research on concurrent relaxed balance trees handles
this problem by using external trees [16] (or by prohibiting deletion
entirely). In an external tree all key-value associations are held
in leaf nodes, so there is never a deletion request that cannot be
satisfied by a local operation. An external tree of size N requires
N − 1 routing nodes, increasing the storage overhead and the
average search path length. We would like to avoid these penalties
while still taking advantage of an external tree’s simple deletion
semantics.

Our solution is to use what we refer to as partially external
trees, in which routing nodes are only created during the removal
of a node with two children. Routing nodes are never created
during insertion, and routing nodes with fewer than two children
are unlinked during rebalancing. Removal of a node with fewer
than two children is handled by immediately unlinking it. In the
worst case, partially external trees may have the same number of
routing nodes as an external tree, but we observe that in practice,
the number of routing nodes is much smaller (see Figure 14). To
illustrate, Figure 7 shows a sequence of deletions in an internal tree,
an external tree, and a partially external tree.

Our tree algorithm uses the same Node data type to represent
both key-value associations and routing nodes. This allows a value
node to be converted to a routing node by modifying a field in
the node, no changes to inter-node links are required. Specifically,
value nodes are those with non-null values and routing nodes are
those that have a null value 2. A routing node for k is converted
back to a value node by a call to put(k, v).

Figure 8 gives some of the code for implementing remove.
The process of removal follows the same pattern as put. Where
Line 58 of attemptPut performs an insertion, attemptRemove
merely returns null, and where Line 62 of attemptPut calls
attemptUpdate, attemptRemove calls attemptRmNode.

attemptRmNode repeats our algorithm’s motif of check, lock,
recheck, then act. Combined with a retry loop in the caller, the mo-
tif implements optimistic concurrency control. attemptRmNode,
however, is complicated enough to illustrate a way in which OCC
tailored to an application can reduce optimistic failure rates.

Line 106 performs a check to see if the node may be unlinked or
if it should be converted to a routing node. If unlinking is possible,
locks are acquired on both the parent p and the node n, and then
Line 121 verifies that unlinking is still possible. If unlinking is no
longer possible, a generic OCC algorithm would have to roll back
and retry, but this is not actually necessary. All of the locks required
to convert n to a routing node are already held, so regardless of the
outcome of this check the critical section may complete its work. In
contrast, optimistic retry is required if the recheck of canUnlink
on Line 108 shows that unlinking has become possible, because the
locks held are only a subset of those required for unlinking.

2 In the benchmarked implementation we support user-supplied null values
by encoding and decoding them as they cross the tree’s public interface.

3.6 Local tree improvements: fixHeightAndRebalance
The implementations of get, put, and remove require only a bi-
nary search tree, but to achieve good performance the tree must be
approximately balanced. Our algorithm performs local improve-
ments to the tree using the fixHeightAndRebalance method,
which is called when a node is inserted or unlinked from the tree.
This method recomputes the height field from the heights of the
children, unlinks routing nodes with fewer than two children, and
performs a single or double rotation to reduce imbalance. Our algo-
rithm applies the same set of rotations as in a sequential AVL tree.
Figure 9 shows a right rotation of d, a double rotation of f (we
refer to this as a right-over-left rotation), and an unlink of b. The
remaining possible local improvements are mirror images of these.

In a strict AVL tree the balance factor is never smaller than −2
or larger than +2, but in a relaxed balance AVL tree this is not
the case. Multiple insertions or deletions may have accumulated
before rebalancing, leading to a balance factor outside the nor-
mal range. We use the same rotation selection criteria as Bougé
et al. [6]. If the apparent balance of a node n is n.left.height−
n.right.height, then we apply a right rotation if a node’s appar-
ent balance is≥ +2 and a left rotation if a node’s apparent balance
is ≤ −2. Prior to a right rotation of a node n, if the apparent bal-
ance of n.left is≤ 0 a left rotation is first performed on n.left.
A similar rule is applied prior to a left rotation of n.

In a concurrent relaxed balance tree there is an important
distinction between the actual height and the value stored in
Node.height. A node’s height field records only the height as
was apparent at a previous point in time, not the height that would
be computed by a traversal of the tree in its current state. Bougé
et al. establish the important theoretical result that, even if rebal-
ancing is performed using only the apparent height, a sequence
of localized improvements to the tree eventually results in a strict
AVL tree [6]. The difficulty lies in efficiently identifying the set of
nodes which can be improved.

Our algorithm guarantees that the tree will be a strict AVL
tree whenever it is quiescent. Each mutating operation (insertion,
removal, or rotation) is careful to guarantee that repairs will only
be required for a node n or one of its ancestors, and that if no repair
to n is required, no repair to any of n’s ancestors is required. The
node n is the one that is passed to fixHeightAndRebalance. The
only mutation that may require repairs that don’t fit this model is a
double rotation in which the lower (first) rotation is not sufficient to
restore balance. In this situation we do not attempt to merge the two
rotations. We instead perform the lower rotation and then reapply
the balance rules to the same node n.

Repair of a node requires that the children’s heights be read,
but performance and scalability would be heavily impacted if locks
were required to perform these reads. Version numbers could be
used to build a read-only atomic region, but this is not necessary.
When considering if a node n should have its height field up-
dated or should be rotated (both of which must be done under a
lock), it is correct to perform the read of n.left.height and
n.right.height without locks or optimistic retry loops. If no
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134 // n.parent, n, and n.left are locked on entry
135 void rotateRight(Node n) {
136 Node nP = n.parent;
137 Node nL = n.left;
138 Node nLR = nL.right;
139
140 n.version |= Shrinking;
141 nL.version |= Growing;
142
143 n.left = nLR;
144 nL.right = n;
145 if (nP.left == n) nP.left = nL; else nP.right = nL;
146
147 nL.parent = nP;
148 n.parent = nL;
149 if (nLR != null) nLR.parent = n;
150
151 val h = 1 + Math.max(height(nLR), height(n.right));
152 n.height = h;
153 nL.height = 1 + Math.max(height(nL.left), h);
154
155 nL.version += GrowCountIncr;
156 n.version += ShrinkCountIncr;
157 }

Figure 10. Performing a right rotation. Link update order is im-
portant for interacting with concurrent searches.

other thread is concurrently modifying those fields, then the check
is atomic without locks or version numbers. If one of the reads is
incorrect, then the thread that is performing a concurrent change
is responsible for repairing n. If another thread is responsible for
the repair, then it is okay if the current fixHeightAndRebalance
incorrectly decides that no repair of n is necessary.

We omit the code for fixHeightAndRebalance due to space
constraints (a download link for complete code is given in Ap-
pendix A), but it uses the same concurrency control structure as
get and remove. An outer loop performs unlocked reads to deter-
mine whether the height should be adjusted, a node should be un-
linked, a rotation should be performed, or if the current node needs
no repair. If a change to the node is indicated, the required locks are
acquired, and then the appropriate action is recomputed. If the cur-
rent locks are sufficient to perform the newly computed action, or if
the missing locks can be acquired without violating the lock order,
then the newly computed action is performed. Otherwise, the locks
are released and the outer loop restarted. If no local changes to the
tree are required then control is returned to the caller, otherwise the
process is repeated on the parent.

The critical section of a right rotation is shown in Figure 10.
This method requires that the parent, node, and left child be locked
on entry. Java monitors are used for mutual exclusion between
concurrent writers, while optimistic version numbers are used for
concurrency control between readers and writers. This separa-
tion allows the critical region to acquire permission to perform
the rotation separately from reporting to readers that a change
is in progress. This means that readers are only obstructed from
Line 140 to Line 156. This code performs no allocation, has no
backward branches, and all function calls are easily inlined.

3.7 Link update order during rotation
The order in which links are updated is important. A concurrent
search may observe the tree in any of the intermediate states,
and must not fail to be invalidated if it performs a traversal that
leads to a branch smaller than expected. If the update on Line 145
was performed before the updates on Lines 143 and 144, then a
concurrent search for n.key that observed only the first link change
could follow a path from n.parent to n.left to n.left.right

158 static int SpinCount = 100;
159
160 void waitUntilNotChanging(Node n) {
161 long v = n.version;
162 if ((v & (Growing | Shrinking)) != 0) {
163 int i = 0;
164 while (n.version == v && i < SpinCount) ++i;
165 if (i == SpinCount) synchronized (n) { };
166 }
167 }

Figure 11. Code to wait for an obstruction to clear.

(none of these nodes are marked as shrinking), incorrectly failing to
find n. In general, downward links originally pointing to a shrinking
node must be changed last and downward links from a shrinking
node must be changed first. A similar logic can be applied to the
ordering of parent updates.

3.8 Iteration: firstNode() and succNode(n)
firstNode() and succNode(n) are the internal building blocks of
an iterator interface. Because they return a reference to a Node,
rather than a value, the caller is responsible for checking later that
the node is still present in the tree. In an iterator this can be done
by internally advancing until a non-null value is found.

firstNode returns the left-most node in the tree. It walks down
the left spine using hand-over-hand optimistic validation, always
choosing the left branch. Optimistic retry is only required if a node
has shrunk.

succNode uses hand-over-hand optimistic validation to traverse
the tree, but unlike searches that only move down the tree it must
retry if either a shrink or grow is encountered. A complex imple-
mentation is possible that would tolerate grows while following
parent links and shrinks while following child links, but it would
have to perform key comparisons to determine the correct link to
follow. We instead apply optimistic validation to the normal tree
traversal algorithm, which is able to find the successor based en-
tirely on the structure of the tree. If n is deleted during iteration
then succNode(n) searches from the root using n.key.

3.9 Blocking readers: waitUntilNotChanging
Prior to changing a link that may invalidate a concurrent search or
iteration, the writer sets either the Growing or Shrinking bit in
the version number protecting the link, as described in Section 3.2.
After the change is completed, a new version number is installed
that does not have either of these bits set. During this interval a
reader that wishes to traverse the link will be obstructed.

Our algorithm is careful to minimize the duration of the code
that executes while the version has a value that can obstruct a
reader. No system calls are made, no memory is allocated, and no
backward branches are taken. This means that it is very likely that a
small spin loop is sufficient for a reader to wait out the obstruction.
Figure 11 shows the implementation of the waiter.

If the spin loop is not sufficient to wait out the obstruction,
Line 165 acquires and then releases the changing node’s mon-
itor. The obstructing thread must hold the monitor to change
node.version. Thus after the empty synchronized block has com-
pleted, the version number is guaranteed to have changed. The ef-
fect of a properly tuned spin loop is that readers will only fall back
to the synchronization option if the obstructing thread has been sus-
pended, which is precisely the situation in which the reader should
block itself. Tolerance of high multi-threading levels requires that
threads that are unable to make progress quickly block themselves
using the JVM’s builtin mechanisms, rather than wasting resources
with fruitless retries.
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3.10 Supporting fast clone
We extend our concurrent tree data structure to support clone, an
operation that creates a new mutable concurrent tree containing the
same key-value associations as the original. After a clone, changes
made to either map do not affect the other. clone can be used to
checkpoint the state of the map, or to provide snapshot isolation
during iteration or bulk read.

We support fast cloning by sharing nodes between the original
tree and the clone, lazily copying shared nodes prior to modifying
them. This copy-on-write scheme requires that we be able to mark
all nodes of a tree as shared without visiting them individually. This
is accomplished by delaying the marking of a node until its parent
is copied. All nodes in the tree may be safely shared once the root
node has been explicitly marked and no mutating operations that
might have not observed the root’s mark are still active.

The clone method marks the root as shared, and then returns
a new enclosing tree object with a new root holder pointing to the
shared root. Nodes are explicitly marked as shared by setting their
parent pointer to null. Clearing this link also prevents a Java
reference chain from forming between unshared nodes under dif-
ferent root holders, which would prevent garbage collection of the
entire original tree. Lazy copying is performed during the down-
ward traversal of a put or remove, and during rebalancing. The
first access to a child link in a mutating operation is replaced by a
call to unsharedLeft or unsharedRight (see Figure 12). Both
children are copied at once to minimize the number of times that
the parent node must be locked.

Mutating operations that are already under way must be com-
pleted before the root can be marked, because they may perform
updates without copying, and because they need to traverse parent
pointers to rebalance the tree. To track pending operations, we sep-
arate updates into epochs. clone marks the current epoch as closed,
after which new mutating operations must await the installation of
a new epoch. Once all updates in the current epoch have completed,
the root is marked shared and updates may resume. We implement
epochs as objects that contain a count of the number of pending
mutating operations, a flag that indicates when an epoch has been
closed, and a condition variable used to wake up threads blocked
pending the completion of a close. The count is striped across mul-
tiple cache lines to avoid contention. Each snap-tree instance has
its own epoch instance.

4. Correctness
Deadlock freedom: Our algorithm uses the tree to define allowed
lock orders. A thread that holds no locks may request a lock on
any node, and a thread that has already acquired one or more locks
may only request a lock on one of the children of the node most
recently locked. Each critical region preserves the binary search
tree property, and each critical region only changes child and parent
links after acquiring all of the required locks. A change of p.left
or p.right to point to n requires a lock on both p, n, and the old
parent of n, if any exists. This means that it is not possible for two
threads T1 and T2 to hold locks on nodes p1 and p2, respectively,
and for T1 to observe that n is a child of p1 while T2 observes that
n is a child of p2.

This protocol is deadlock free despite concurrent changes to the
tree structure. Consider threads Ti that hold at least one lock (the
only threads that may participate in a deadlock cycle). Let ai be the
lock held by Ti least recently acquired, and let zi be the lock held
by Ti most recently acquired. The node zi is equal to ai or is a de-
scendent of ai, because locks are acquired only on children of the
previous zi and each child traversal is protected by a lock held by
Ti. If Ti is blocked by a lock held by Tj , the unavailable lock must
be aj . If the unavailable lock were not the first acquired by Tj then

168 Node unsharedLeft(Node p) {
169 Node n = p.left;
170 if (n.parent != null)
171 return n;
172 lazyCopyChildren(n);
173 return p.left;
174 }
175 Node unsharedRight(Node p) { ... }
176
177 void lazyCopyChildren(Node n) {
178 synchronized (n) {
179 Node cl = n.left;
180 if (cl != null && cl.parent == null)
181 n.left = lazyCopy(cl, n);
182 Node cr = n.right;
183 if (cr != null && cr.parent == null)
184 n.right = lazyCopy(cr, n);
185 }
186 }
187 Node lazyCopy(Node c, Node newPar) {
188 return new Node(c.key, c.height, c.value, newPar,
189 0L, markShared(c.left), markShared(c.right));
190 }
191 Node markShared(Node node) {
192 if (node != null) node.parent = null;
193 return node;
194 }

Figure 12. Code for lazily marking nodes as shared and perform-
ing lazy copy-on-write. Nodes are marked as shared while copying
the parent.

both Ti and Tj would agree on the parent and hold the parent lock,
which is not possible. This means that if a deadlock cycle were
possible it must consist of two or more threads T1 · · ·Tn where zi

is the parent of a(i mod n)+1. Because no such loop exists in the
tree structure, and all parent-child relationships in the loop are pro-
tected by the lock required to make them consistent, no deadlock
cycle can exist.

Linearizability: To demonstrate linearizability [13] we will define
the linearization point for each operation and then show that opera-
tions for a particular key produce results consistent with sequential
operations on an abstract map structure.

We define the linearization point for put(k, v) to be the last ex-
ecution of Line 82 or 92 prior to the operation’s completion. This
corresponds to a successful attemptInsert or attemptUpdate.
We define the linearization point for get(k) to be the last execution
of Line 27 if Line 39 is executed, Line 34 if that line is executed and
child.value 6= null or child.version 6= Unlinked, or oth-
erwise Line 128 during the successful attemptRmNode( ,child)
that removed child. If remove(k) results in the execution of ei-
ther Line 111 or 120 we define that to be the linearization point.
We omit the details for the linearization point of a remove opera-
tion that does not modify the map, but it is defined analogously to
get’s linearization point.

Atomicity and ordering is trivially provided between puts that
linearize at Line 92 (updates) and removals that change the tree
(both the introduction of routing nodes and unlinking of nodes)
by their acquisition of a lock on the node and their check that
node.version 6= Unlinked. Nodes are marked unlinked while
locked, so it is not possible for separate threads to simultaneously
lock nodes n1 and n2 for k, and observe that neither is unlinked.
This means that any operations that operate on a locked node for k
must be operating on the same node instance, so they are serialized.
The only mutating operation that does not hold a lock on the node
for k while linearizing is insertion, which instead holds a lock on
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the parent. The final hand-over-hand optimistic validation during
insert (Line 80) occurs after a lock on the parent has been acquired.
The validation guarantees that if a node for k is present in the map
it must be in the branch rooted at node.child(dir), which is
observed to be empty. This means that no concurrent update or
remove operation can observe a node for k to exist, and that no
concurrent insert can disagree about the parent node into which
the child should be inserted. Since concurrent inserts agree on the
parent node, their lock on the parent serializes them (and causes the
second insert to discover the node on Line 80, triggering retry).

Linearization for get is a bit trickier, because in some cases we
perform the last validation (Line 28) prior to reading child.value
(Line 34); during this interval childmay be unlinked from the tree.
If a node for k is present in the tree at Line 27 then get will not fail
to find it, because the validation at Line 28 guarantees that the bi-
nary search invariant held while reading node.child(dir). This
means that when returning at Line 39 we may correctly linearize
at Line 27. If a child is discovered and has not been unlinked
prior to the read of its value, then the volatile read of this field is
a correct linearization point with any concurrent mutating opera-
tions. If child 6= null but it has been unlinked prior to Line 34
then we will definitely observe a value of null. In that case
attemptRmNode had not cleared the child link of node (Line 124
or 126) when we read child, but it has since set child.version
to Unlinked (Line 128). We therefore declare that get linearizes
at this moment when k was definitely absent from the map, before
a potential concurrent insert of k.

5. Performance
In this section we evaluate the performance of our algorithm. We
compare its performance to Doug Lea’s lock-free Concurrent-
SkipListMap, the fastest concurrent ordered map implementation
for Java VMs of which the authors are aware. We also evaluate our
performance relative to two red-black tree implementations, one of
which uses a single lock to guard all accesses and one of which is
made concurrent by an STM.

The benchmarked implementation of our algorithm is writ-
ten in Java. For clarity this paper describes put, remove, and
fixHeightOrRebalance as separate methods, but the complete
code does not have this clean separation. The ConcurrentMap
operations of put, putIfAbsent, replace, and remove are all
implemented using the same routine, with a case statement to deter-
mine behavior once the matching node has been found. In addition,
an attempt is made to opportunistically fix the parent’s height dur-
ing insertion or removal while the parent lock is still held, which
reduces the number of times that fixHeightOrRebalance must
reacquire a lock that was just released. The benchmarked code also
uses a distinguished object to stand in for a user-supplied null value,
encoding and decoding at the boundary of the tree’s interface.

Experiments were run on a Dell Precision T7500n with two
quad-core 2.66Ghz Intel Xeon X5550 processors, and 24GB of
RAM. Hyper-Threading was enabled, yielding a total of 16 hard-
ware thread contexts. We ran our experiments in Sun’s Java SE
Runtime Environment, build 1.6.0 16-b01, using the HotSpot
64-Bit Server VM with default options. The operating system
was Ubuntu 9.0.4 Server, with the x86 64 Linux kernel version
2.6.28-11-server.

Our experiments emulate the methodology used by Herlihy et
al. [11]. Each pass of the test program consists of each thread
performing one million randomly chosen operations on a shared
concurrent map; a new map is used for each pass. To simulate a
variety of workload environments, two main parameters are varied:
the proportion of put, remove, and get operations, and the range
from which the keys are selected (the “key range”). Increasing the
number of mutating operations increases contention; experiments
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Figure 13. Single thread overheads imposed by support for con-
current access. Workload labels are 〈put%〉-〈remove%〉-〈get%〉. A
key range of 2×105 was used for all experiments.

with 90% get operations have low contention, while those with
0% get operations have high contention. The key range affects
both the size of the tree and the amount of contention. A larger
key range results in a bigger tree, which reduces contention.

To ensure consistent and accurate results, each experiment con-
sists of eight passes; the first four warm up the VM and the second
four are timed. Throughput results are reported as operations per
millisecond. Each experiment was run five times and the arithmetic
average is reported as the final result.

We compare five implementations of thread-safe ordered maps:

• skip-list - Doug Lea’s ConcurrentSkipListMap This skip
list is based on the work of Fraser and Harris [9]. It was first
included in version 1.6 of the Java™ standard library.

• opt-tree - our optimistic tree algorithm.
• snap-tree - the extension of our algorithm that provides support

for fast cloning and snapshots.
• lock-tree - a standard java.util.TreeMap wrapped by
Collections.synchronizedSortedMap(). Iteration is pro-
tected by an explicit lock on the map.

• stm-tree - a red-black tree implemented in Scala3 using CC-
STM [7]. STM read and write barriers were minimized manu-
ally via common subexpression elimination. To minimize con-
tention no size or modification count are maintained.

We first examine the single-threaded impacts of supporting con-
current execution. This is important for a data structure suitable for
a wide range of uses, and it places a lower bound on the amount
of parallelism required before scaling can lead to an overall per-
formance improvement. We compare the sequential throughput of
the five maps to that of an unsynchronized java.util.TreeMap,
labeled “seq-tree”. Values are calculated by dividing the through-
put of seq-tree by that of the concurrent map. Figure 13 shows that
on average our algorithm adds an overhead of 28%, significantly
lower than the 83% overhead of skip-list, but more than the 6%
imposed by an uncontended lock. The STM’s performance penalty
averages 443%. As expected, snap-tree is slower than opt-tree, but
the difference is less than 3% for this single-threaded configuration.

Our second experiment evaluates the number of nodes present
in a partially external tree compared to a fully external tree. In-
ternal trees are the baseline, as they contain no routing nodes. To
simulate a range of workloads we perform a million put or remove
operations, varying the fraction of puts from 0% to 100%. In this

3 The Scala compiler emits Java bytecodes directly, which are then run on
the Java VM. Scala code that does not use closures has performance almost
identical to the more verbose Java equivalent.
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Figure 14. Node count as tree size increases. One million opera-
tions were performed with a varying ratio of put and remove op-
erations, and a key range of 2×105; the number of nodes in the
resulting tree is shown.

experiment we use a key range of 2×105. The results, presented in
Figure 14, show that partially external trees require far fewer rout-
ing nodes (on average 80% fewer) than external trees. A key range
of 2×106 with 10 million operations yields a similar curve.

Figure 15 shows how throughput scales as the number of threads
is swept from 1 to 64, for a range of operation mixes and various
levels of contention. Moving left to right in the figure, there are
fewer mutating operations and thus lower contention. Moving bot-
tom to top, the range of keys get larger, resulting in bigger trees and
lower contention. Thus the lower left graph is the workload with
the highest contention and the upper right is the workload with the
lowest contention.

As expected, the throughput of each map, with the excep-
tion of lock-tree, generally increases as more of the system’s
16 hardware thread contexts are utilized. At multiprogramming
levels of 2 and 4 (32 and 64 threads) throughput flattens out.
Higher numbers of threads increase the chances that a single
fixHeightAndRebalance call can clean up for multiple mutat-
ing operations, reducing the amortized cost of rebalancing and
allowing scaling to continue past the number of available hardware
threads in some cases. As the key range gets smaller the absolute
throughput increases, despite the higher contention, showing that
both Lea’s and our algorithms are tolerant of high contention sce-
narios. The absolute throughput also increases as the number of
mutating operations decreases (going from left to right), as would
be expected if reads are faster than writes. The course-grained lock-
ing of lock-tree imposes a performance penalty under any amount
of contention, preventing it from scaling in any scenario. Stm-tree
exhibits good scaling, especially for read-dominated configura-
tions, but its poor single-threaded performance prevents it from
being competitive with skip-list or either of our tree algorithms.

With a large key range of 2×106, our algorithm outperforms
skip-list by up to 98%, with an average increase in throughput
of 62% without fast clone and snapshot support, and 55% with
such support. Both of our tree implementations continue to exhibit
higher throughput with a key range of 2×105, but as the key range
decreases and contention rises, the advantage becomes less pro-
nounced. Opt-tree performs on par with skip-list for a key range of
2×104, but fails to maintain its performance advantage in multipro-
gramming workloads with a key range of 2×103, the only work-
load in which skip-list has noticeably higher performance. In the
worst case for opt-tree (64 threads, 20-10-70 workload, and a key
range of 2×103) it was 13% slower than skip-list. In the worst case
for snap-tree (64 threads, 50-50-0 workload, and a key range of
2×103) it was 32% slower than skip-list. Averaged over all work-
loads and thread counts, opt-tree was 32% faster than skip-list and
snap-tree was 24% faster than skip-list.

The primary difference between opt-tree and snap-tree is snap-
tree’s epoch tracking. This imposes a constant amount of extra
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Figure 17. Throughput performing the 20-10-70 workload over
2×105 keys with concurrent consistent iterations.

work on each put or remove. As expected, the overhead of support-
ing snapshots decreases when moving right in the table, to config-
urations with fewer mutating operations. The relative cost of epoch
tracking is also reduced as the tree size increases, because more
work is done per operation. Across the board, snap-tree imposes a
9% overhead when compared to opt-tree, with a worst-case penalty
of 31%. Snap-tree’s overhead for read operations is negligible.

We next examine the performance of iterating sequentially
through the map while concurrent mutating operations are being
performed. Our standard per-thread workload of 20% puts, 10%
removes, and 70% gets, and a key range of 2×105 is interleaved
at regular intervals with a complete iteration of the map. On aver-
age only one thread is iterating at a time. We calculate throughput
as the total number of nodes visited, divided by the portion of total
running time spent in iteration; the results are presented in Fig-
ure 16. Our experimental setup did not allow us to accurately mea-
sure the execution breakdown for multiprogramming levels greater
than one, so we only show results up to 16 threads. At its core,
ConcurrentSkipListMap contains a singly-linked list, so we ex-
pect it to support very fast iteration. Iteration in opt-tree is much
more complex; nevertheless, its average performance is 48% that
of skip-list. No optimistic hand-over-hand optimistic validation is
required to iterate the snapshot in a snap-tree, so its performance
is intermediate between skip-list and opt-tree, even though it is
providing snapshot consistency to the iterators.

Snap-tree provides snapshot isolation during iteration by travers-
ing a clone of the original tree. This means that once the epoch
transition triggered by clone has completed, puts and removes
may operate concurrently with the iteration. To evaluate the per-
formance impact of the lazy copies requires by subsequent writes,
Figure 17 plots the throughput of non-iteration operations during
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Figure 15. Each graph shows the throughput of the maps as thread count ranges from 1 to 64. “skip-list” is ConcurrentSkipListMap,
“opt-tree” is our basic optimistic tree algorithm, “snap-tree” is the extension of our algorithm that supports fast snapshots and cloning, “lock-
tree” is a synchronized java.util.TreeMap, and “stm-tree” is a red-black tree made concurrent with an STM. Moving left to right, the
operation mix has fewer mutating operations and thus lower contention. Moving bottom to top, the range of keys get larger, resulting in
bigger trees and lower contention. Thus the lower left graph is the workload with the highest contention and the upper right is the workload
with the lowest contention. 16 hardware threads were available.
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the same workload as Figure 16, along with the throughput with
no concurrent iterations. Only snap-tree and lock-tree are shown,
because they are the only implementations that allow consistent
iteration. On average, concurrent iterations lower the throughput of
other operations by 19% in snap-tree.

6. Conclusion
In this paper we use optimistic concurrency techniques adapted
from software transactional memory to develop a concurrent tree
data structure. By carefully controlling the size of critical regions
and taking advantage of algorithm-specific validation logic, our
tree delivers high performance and good scalability while being
tolerant of contention. We also explore a variation of the design that
adds support for a fast clone operation and that provides snapshot
isolation during iteration.

We compare our optimistic tree against a highly tuned concur-
rent skip list, the best performing concurrent ordered map of which
we are aware. Experiments shows that our algorithm outperforms
the skip list for many access patterns, with an average of 39%
higher single-threaded throughput and 32% higher multi-threaded
throughput. We also demonstrate that a linearizable clone operation
can be provided with low overhead.

A. Code
Java implementations of opt-tree and snap-tree are available from
http://github.com/nbronson/snaptree.
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