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Graph Analysis 

 Classic graphs; New applications 

 Artificial Intelligence, Computational Biology, … 

 SNS apps: Linkedin, Facebook,…  

 Example> Movie Database 

 

James 
Cameron 

Avatar 

Sigourney 
Weaver 

Aliens 

Sam 
Worthington 

Linda 
Hamilton 

…… 

“Is he a central figure in the movie 
network? How much?” 

Kevin Bacon 

“Do these actors work together 
more frequently than others?” 

Ben Stiller Jack Black Owen Wilson 

Graph Analysis: a process of 
drawing out further information 
from the given graph data-set 

“What would be the avg. hop-distance 
between any two (Australian) actors?” 



More formally … 

 Graph Data-Set 

 Graph G = (V,E): Arbitrary relationship (E) between 
data entities (V) 

 Property P: any extra data associated with each vertex 
or edge of graph G  (e.g. name of the person) 

 Your Data-Set = (G, Π) = (G, P1, P2, … ) 

 Graph analysis on (G, Π)  

 Compute a scalar value 

 e.g. Avg-distance, conductance, eigen-value, … 

 Compute a (new) property 

 e.g. (Max) Flow, betweenness centrality, page-rank, … 

 Identify a specific subset of G: 

 e.g. Minimum spanning tree, connected component, community 
structure detection, … 



The Performance Issue 

 Traditional single-core machines showed limited 
performance for graph analysis problems 

 A lot of random memory accesses + data does not fit 
in cache 

   Performance is bound to memory latency 

 Conventional hardware (e.g. floating point units) does 
not help much 

 Use parallelism to accelerate graph analysis 

 Plenty of data-parallelism in large graph instances 

 Performance now depends on memory bandwidth, not 
latency.  

 Exploit modern parallel computers: Multi-core CPU, 
GPU, Cray XMT, Cluster, ... 



New Issue:  
Implementation Overhead 

 It is challenging to implement a graph 
algorithm 

 correctly 

 + and efficiently  

 + while applying parallelism 

 + differently for each execution environment 

 Are we really expecting a single (average-
level) programmer to do all of the above? 



Our approach: DSL 

 We design a domain specific language (DSL) for graph analysis 

 The user writes his/her algorithm concisely with our DSL 

 The compiler translates it into the target language (e.g. parallel 
C++ or CUDA) 

Efficient (parallel) 
Implementation of 
the given algorithm 

For(i=0;i<G.numN
odes();i++) { 
  __fetch_and_add 
(G.nodes[i], …) 

Foreach (t: G. 
Nodes) 
    t.sigma += 
… 

Intuitive 
Description of a 
graph algorithm 

…… 

Edgeset 

Foreach 

BFS 

(1) Inherent data-parallelism (2) Good impl. templates 

(3) High-level optimization 

DSL 
Target Language  
(e.g. C++) 

DSL 
Compiler 

Source-to-Source Translation 



Example: Betweenness Centrality 

 Betweenness Centrality (BC) 

 A measure that tells how ‘central’ 
a node is in the graph 

 Used in social network analysis 

 Definition 

 How many shortest paths are 
there between any two nodes 
going through this node. 

 
Ayush K. 
Kehdekar 

Kevin 
Bacon 

High BC Low BC 

[Image source; Wikipedia] 



Example: Betweenness Centrality 

[Brandes 2001]  

s 

v 

w w w 

Reverse 
BFS 

Order 

Compute delta from children 

 Queues, Lists, 
Stack… 
Is this 
parallelizable? 

Looks 
complex 

s 

w w 

v 

BFS 
Order 

Compute sigma from parents 

Parallel 
Assignment 

Parallel 
BFS 

Parallel 
Iteration 

Init BC for every node 
and begin outer-loop (s) 

Accumulate delta into BC 

Reduction 



DSL Approach: Benefits 

 Three benefits  

 Productivity  

 Portability 

 Performance 

 

 



Productivity Benefits 

 A common limiting resource in software development  

   your brain power (i.e. how long can you focus?) 

A C++ implementation  
of BC from SNAP  ( a 
parallel graph library 
from GT): 

≈ 400 line of codes (with 
OpenMP) 

Vs. Green-Marl* LOC: 24 

*Green-Marl (그린 말) means 
Depicted Language in Korean 



Productivity Benefits 

 It is more than LOC 

    Focusing on the algorithm, not its implementation 

    More intuitive, less error-prone 

    Rapidly explore many different algorithms 

 

Procedure Manual 
LOC 

Green-Marl 
LOC 

Source Misc 

BC ~ 400 24 SNAP C++ openMP 

Vertex Cover 71 21 SNAP C++ openMP 

Conductance 42 10 SNAP C++ openMP 

Page Rank 75 15 http:// .. C++ single thread 

SCC  65 15 http:// .. Java single thread 



Portability Benefits 

 Multiple compiler targets 

 

 

 

 SMP back-end 

 Cluster back-end (*) 

 For large instances 

 We generate codes that work on Pregel API [Malewicz 
et al. SIGMOD 2010] 

 GPU back-end (*) 

 For small instances 

 We know some tricks [Hong et al. PPOPP 2011] 

DSL  
Description 

DSL 
Compiler 

(Parallelized) 
C++ 

LIB (& RT) 

Command line 
argument 

CUDA for 
GPU 

LIB (& RT) 

Codes for 
Cluster 

LIB (& RT) 



Performance Benefits 

Parsing & 
Checking 

Arch.  
Independent  

Opt 

Arch. 
Dependent 

Opt 

Code 
Generation 

Green - Marl Code  

Target Code  

(e.g. C++)  

Target Arch. 
(SMP? GPU? 
Distributed?) 

Threading Lib, 
(e.g.OpenMP) 
Graph Data Structure 

Compiler 

Use High-level 
Semantic 
Information 

Back-end specific 
optimization 

Optimized data structure 
& Code template 



G.A = G.C + 1;   // Group Assignment  

G.B = G.A + G.C; // (vector - like operation)   

é 

 

 

ax 

Syntactic sugars  may create a lot 
of independent loops 

Syntactic sugar 
Expansion 

Arch-Indep-Opt: Loop Fusion 

Foreach (t: G. Nodes )  

   t.A = t.C + 1;  

Foreach (s: G. Nodes )  

   s.B = s.A + s.C;  

 

Foreach (t: G. Nodes ) {  

   t.A = t.C +1;  

   t.B = t.A + t.C;  

}  

Loop 
Fusion 

Map<Node, int> A, B, C;  

List<Node>& Nodes = G.getNodes();  

List<Node>::iterator t, s;  

for (t = Nodes.begin(); t != Nodes.end(); t++)  

   A[*t] = C[*t];  

for (s = Nodes.begin(); s != Nodes.end(); s++)  

   B[*s] = A[*s] + C[*s];  

    

 

 

C++ compiler cannot merge loops  
(Independence not guaranteed) 

“set” of nodes 
(elems are unique) 



Arch-Indep-Opt: Flipping Edges 

 Graph-Specific Optimization 

 

 

 

 

 

Foreach (t: G. Nodes )  

  Foreach (s: t. InNbrs )(s.B>0)  

    t.A += 1;  

 

Foreach (t: G. Nodes )(t.B>0)  

  Foreach (s: t. OutNbrs )  

    s.A += 1;  

 

t 

s s 

s 

t 

s 

Counting number of 
Incoming Neighbors 
whose B value is positive 

Adding 1 to for all 
Outgoing Neighbors, 
if my B value is 
positive 

(Why?) Reverse edges may not be 
available or expensive to compute 



Arch-Dep-Opt : Selective Parallelization 

 Flattens nested parallelism with a heuristic 

Foreach (t: G. Nodes ) {  

  Foreach (s: G. Nodes )(s.X > t.Y) {  

    Foreach (r: s. Nbrs ) {  

       s.A += r.B;  

    }  

    t.C *=  s.A;  

  }  

  val min= t.C  

}  

   

       

Three levels of 
nested parallelism 
+ reductions 

For  (t: G. Nodes ) {  

  Foreach (s: G. Nodes )(s.X > t.Y) {  

    For  (r: s. Nbrs ) {  

       s.A += r.B;  

    }  

    t.C *=  s.A;  

  }  

  val min= t.C  

}  

   

       

Compiler chooses 
parallel region, 
heuristically 

For (t: G. Nodes ) {  

  Foreach (s: G. Nodes )(s.X > t.Y) {  

    For (r: s. Nbrs ) {  

       s.A = s.A + r.B;  

    }  

    t.C *=  s.A;  

  }  

  val = ( t.C < val) ? t.C : val;  

}  

   

       

Reductions became 
normal read & write 

             [Why?]  
• Graph is large  
• # core is small.   
• There is 
overhead for  
parallelization 

 



Code-Gen: Saving DownNbrs in BFS 

 Prepare data structure for reverse BFS traversal during 
forward traversal, only if required. 

InBFS (t: G. Nodes From s ) {  

  é 

}  

InRBFS {  

   Foreach  (s: t. DownNbrs )  

      é 

}  

// Preperation of BFS  

é 

 

// Forward BFS (generated)  

{ é 

  // k is an out - edge of s  

  for (k é )   

     node_t child = get_node(k);  

     if  (is_not_visited(child)) {  

        é;     // normal BFS code here  

        edge_bfs_child[k] = true;  

  }  }  

é} 

 

// Reverse  BFS (generated)  

{ é 

 // k is an out - edge of s  

  for (k é )  {  

     if  (! edge_bfs_child [k]) continue ;  

     é 

} }  

Compiler detects that 
down-nbrs are used in 
reverse traversal 

Generated code 
saves edges to the 
down-nbrs during 
forward traversal. 

Generated code can 
iterate only edges to 
down-nbrs during 
reverse traversal 



Code-Gen: Reduction 

 Reduction to Scalar Privatization 

 

 

 

 

 

 
 

// reduction by minimum  

Foreach (t: G. Nodes )  

  x min= t. A;  

 

// C++ OpenMP Implementation  

#pragma omp parallel  

{  // Privatization  

   int  x_prv = x;  

   #pragma omp for  

   for (t=G.begin();...)  

     x_prv = min(x_prv, A[t]);  

 

   // Test and Test - set  

   if  (x_prv < x) {  

     bool  success = false ;  

     while (!success) {  

       if  (x >= x_prv) break ;  

       success = CAS(x, x_prv);  

     }       

   }  

}  



Code-Gen: Code Templates 

 Data Structure 

 Graph: similar to a conventional graph library 

 Collections: custom implementation 

 

 Code Generation Template 

 BFS  

 Hong et al. PACT 2011 (for CPU and GPU) 

 Better implementations coming; can be adapted 
transparently 

 DFS 

 Inherently sequential  

 

 

 

 



Experimental Results 

 Betweenness Centrality Implementation 

(1) [Bader and Madduri ICPP 2006]  

(2) [Madduri et al. IPDPS 2009]  

     Apply some new optimizations  

     Performance improved over (1) ~ x2.3 on Cray XMT 

Parallel implementation available in SNAP library based  

 on (1) not (2) (for x86) 

 

 Our Experiment 

Start from DSL description (as shown previously) 

Let the compiler apply the optimizations in (2), 
automatically. 

 



(two different synthetic graphs) 

Experimental Results 

Better single thread performance: 
(1) Efficient BFS code 
(2) No unnecessary locks 

Effects of other optimizations 
• Flipping Edges 

• Saving BFS children 

Shows speed up over 
Baseline: SNAP 
(single thread) 

Parallel performance 
difference 

Nehalem (8 cores x 2HT), 32M nodes, 256M edges 



Other Results 

Conductance 

Perf similar to 
manual impl. 

•Loop Fusion 
• Privitization 

Vertex Cover 

 
Original code  
 data race; 

Naïve correction 
(omp_critical)   
 serialization 

 

 

•Test and Test-set 
• Privitization 



Other Results 

PageRank 

Strongly 
Connected 
Component 

DFS + BFS:  
Max Speed-up is 2 

(Amdahl's Law) 

Compare against Seq. Impl 



Usage Model 

“Do you expect me to re-write my whole application 
with your DSL?” 

 No. Our src-to-src translation does not demand it. 

 Okay, maybe a little glue code 

Your Complex 
Software 

DSL  
Description 

DSL 
Compiler 

Parallel 
C++ 

CUDA 

…… 

LIB (& RT) LIB (& RT) 

Graph Analysis 
Routines 

 

Your Complex 
Software 

Rewrite 

Link 



About Libraries 

“Can I still use my custom library inside DSL?” 

 Yes, via foreign syntax  

 Similar to _asm_ mechanism in gcc 

 Statements inside [] 

    Compiler simply keeps the text as-is in the generated 
code 

 Just tell the compiler what are being read/mutated. 

 
Procedure foo(x: Int , U: $User_Type ) {  

    éé 

    //  Read - Set: x and U  

    //  Write - Set: x  

    [C _function( $x , $U.get_val()) ]::[ x ] ;   

    éé 

}  

     Any foreign (e.g. C++) 
statement inside [] 



Hand-tuned Codes 

“I, as an expert, can create faster code by hand-
tuning.” 

Yes, I’m sure you can 

 DSL will be more helpful to non-experts. (Productivity) 

DSL enables rapid exploration of different algorithms  

You can manually enhance compiler-generated code 

 Compiler output is fairly human-readable C++ code  

DSL also provides portability  

 

 

 

 

 

 

 



What about debugging? 

 Yes, another good question.  

 Currently, we’re now relying on debugging at generated 
C++ code level.  

 I.e. you can use gdb. 

 This is no harder than you’re using a graph library (in theory) 

 Generated output is human readable. 

 

 The compiler does (should) not make mistakes.  

 The compiler can dump out the intermediate results (in 
Green-Marl syntax) at each (sub-)step . 

 

 We also plan to implement ‘interpreter’ environment. 

 Will look like a MATLAB for graph.  

 

Variable names 
are preserved 

Additional variable 
names are derived 
from original names 

Generated 
codes are 
normal C++ 
program 



Tracing the Compiler’s Work 
Verbose = on 
Stop after Stage 2. 

Sums are expanded 
into loops Loops are merged 



Portability – Different Backends 

 Different back-ends of Green-Marl 

 Cache-coherent shared memory: current 

 Pregel (Distributed Environment) : on-going 

 Cray XMT : early investment 

 GPU : early investment 

 GraphLab (a different run-time): idea 
brainstroming 

 Custom hardware: idea brainstorming 

 RamCloud: idea brainstorming  

 



Capacity Issue in Graph Analysis 

 Large graph + Associated data   

    ≥ Main Memory 

 

 Disk-based system (i.e. virtual memory) ? 

 A lot of random accesses   disk latency kills you 

 Stand-alone distributed program? 

 Large development overhead 

 Map-Reduce (Hadoop)? 

 Unable to keep state across iterations  
performance loss  

  Pregel (or its replicates)  

 



Pregel (from Google) 

 Map-Reduce like framework with enhancement 

 Iterative, Sensitive, Vertex-centric 

 A vertex can maintain its associated data 

 Single compute() function 

 Called for every vertex by the system 

 At each time step 

 Framework provides APIs for neighborhood 
communication 

 Messages are delivered at 

the next time step. 

 

Node1 Node n 

Int x; 
Int y; 

compute() 

Node1 Node n 

compute() 

Step I 

Step I+1 



Implementation Issue 

 New Issue: Your algorithm has to be converted 
for Pregel API  

// Count number of teen followers  

// for each node(person) in a SN  

Foreach (n: G. Nodes ) {  

  n.teenCount =  

    Count (t:n. InNbrs )  

      (t.age>=10 && t.age<20);  

}  

// Compute average number of  

// teen - followers of people of  

// certain age   

Float  avgAgeTeenFollowers =  

    Avg(n:G. Nodes )(n.age>K)  

       {n.teenCnt};  

 

 

class  foo extends  é { 

éé 

 public void  compute(é){ 

  if  (step == 1) {  

    if  ( this .age >= 10 &&  

        this .age <= 20)  

      sendNeighbors (  

         new IntMessage(1));  

  }      

  else if (step == 2) {  

    this .teenCount = 0;  

    for (r: getReceived())  

       this.teenCount +=  

         r.IntValue();   

  }  

  else if  (step = 3) {  

     if  (this.age > K) {  

        é. 

Imperative Your algorithm 

Based on 
random reading 
Based on 
random reading 

Need 
boilerplate 
code 

Need context 
management 

Message 
Sending 

Message 
Receiving 

Message is 
always 
pushed, 
not pulled 

need some 
tricks for 
global 
computation  

Pregel Implementation 

Some global-
scoped sequential  
computation 

Automatic Translation? 



Issues to be solved 

 Sequential computation 

 Globally scoped variables 

 Management of Execution Context 

 Communication (message sending/receiving) 

 Enforcing Push-based messaging 

…… 

 



Our framework 

 Pregel (from Google) is not open to public.  

 GPS: an implementation of Pregel from 
Stanford, with Semih Salihoglu 

 With enhancements 

 Optimized for performance 

 x5~10 faster than Giraph (a popular Pregel 
implementation from Yahoo/Apache) 

 Elegant API for global objects and sequential 
computation 



class vertex  

{  

  void compute() {  

     ...  

  }  

}  

GPS app. 

Handling Sequential Portion 

 Your algorithm may include sequential portion 

 E.g. termination based on global sum of difference 
in page rank algorithm 

 GPS provides a nice API for this: 

 master class, master.compute()   

class master  

{  

  void compute() {  

     ...  

  }  

}  Parallel (vertex-
wise) computation 

Sequential (global) 
computation 

Alternating execution 



Globally shared variables 

 Another useful API: Global object map 

 
class master  {  

 void compute() {  

   éé 

   global .put(ñxò, 

      new IntVal(1));     

 

  }  

}  

class vertex {  

  void compute() {  

   é 

   int x=     

     global .get(ñxò) 

        .intVal();  

  }  

}  
Master puts an 
value object to the 
map The object is 

broadcast to every 
vertices at following 
vertex-compute() 

Map is cleared at the 
end of each 
computation step 



Compiler Translation: 
Global Object Management 
Procedure foo( age,teenCnt :N_P<Int>,  

   K: Int) {  

é  

Int S=0; // globally scoped  

Foreach  (n:G. Nodes )   

  If  (n. age>K)  

    S += n. teenCnt ;  

 

 

class  master  {  

 int  S;  

 int  K;  

 void  compute() { é 

  S = 0; é 

  global .put(ñKò, new IntVal(K));     

 é 

  S+= global .get(ñSò).intVal(); 

é } 

class  vertex {  

 int  age;  

 int  teenCnt;  

 void  compute() {  

  é 

  int  K=  

    global .get(ñKò).intVal(); 

  if  ( this .age > K){  

    global .put(ñSò, new  

     IntSumVal (this.teenCnt);  

  }  

  é 

}  

master copy of 
global variables Compiler knows when 

the variable is used 

Node property 

Node property Reduction is 
implemented via 
special API 



Compiler Translation: 
Execution Context & Sequential Portion 

Foreach (n: G. Nodes ) {  

  n.teenCnt = é 

}  

 

Int S=0;  

  

Foreach  (n:G. Nodes ) {   

  If  (n.age>K)  

    S += n.teenCnt;  

}  

 

 

 

Compiler can figure 
out phases 
of algorithm 

class  master  {  

 int  _state;  

 void  compute() {  

  switch (_state) {  

   case  1: do_state_1();  

    ...  

  } }  

  void  do_state_3() {  

   global .put (ñKò, new IntVal (K));  

   startVertex  = true;  

   _stateNxt  = 4; }  

(1) 

(2) 

(3) 
Compiler 
generates 
state-machine 
at master (4) 

class  vertex  {  

 ...  

 void  compute(..) { é 

  int  _state =     

   global .get(ñ_stateò) 

                .intVal();  

 

  switch (_state) {  

   case  1: ..  

  }  

 }  

 void  do_state_3() {  

  int  K= é 

  if (this.age > K)  

    ...  

 }  

  

Current state is 
broadcast to 
vertices 



Compiler Translation: 
Communication 

é 

Foreach (n: G. Nodes ){  

  If  (n.age >= 10 ...)  

    Foreach (t: n. Nbrs ) {  

      t.teenCnt += 1;       

    }  

}  

 

 

 

Nested loop implies 
communication 

class  vertex  { ...  

  void  do_state_1() {  

   if ( this .age >= 10 é ) { 

     sendNbrs ( new Msg(é));   

   }      

 

  void  do_state_2() {  

   for (Msg r: getRcvd ()) {  

     this .teenCnt += 1;  

   }  

  

Communication is 
split into two 
consecutive states:     
   sending + receiving 

Outer-loop becomes 
sending side 

Inner-loop becomes 
receiving side 



Enforcing Push-based algorithm 

 

Foreach (n: G. Nodes )  

  Foreach (t: n. Nbrs )  

    t .X += f(t.Y, n.Z);  

  

 

Foreach (n: G. Nodes )  

  Foreach (t: n. Nbrs )  

    n. X += g(t.Y, n.Z);       

   

 

 

 

This nested loop is a 
push. 

This nested loop is a 
pull. (cannot be 
implemented with 
API) 

 

Foreach ( t : G. Nodes )  

  Foreach ( n: t. InNbrs )  

    n.X += g(t.Y, n.Z);  

  

 

 

 

Compiler transforms 
it into push by 
flipping edges 

n1 n2 

t1 t2 

n1 n2 

t1 t2 

For every n, push 
n.Y to out-neighbor 
t to update t.X 

For every n, pull t.Y 
from out-neighbor t 
to update n.X 

For every t, push t.Y 
to in-neighbor n to 
update n.X 



Node_Prop<Int> _Stmp;  

Foreach (n: G. Nodes )  

  n._Stmp = 0;  

 

Foreach ( t : G. Nodes ) (...)  

  Foreach ( n: n. Nbrs )  

    n._Stmp += 1;  

 

Foreach (n: G. Nodes )  

  n.teenCnt = n._Stmp;  

   

 

 

 
Node_Prop<Int> _Stmp;  

Foreach (n: G. Nodes )  

  n._Stmp = 0;  

 

Foreach (n: G. Nodes )  

  Foreach (t: n. InNbrs )(...)  

    n._Stmp += 1;  

 

Foreach (n: G. Nodes )  

  n.teenCnt = n._Stmp;  

   

 

 

 

Compiler Transformation: 
Applying edge-flipping 

 

Foreach (n: G. Nodes )  

  n.teenCnt =  

   Sum(t:n. InNbrs )(...){1};  

 

 

 

 

Foreach (n: G. Nodes )  

  Int  _S = 0;  

  Foreach (t: n. InNbrs )(...)  

    _S += 1;  

  n.teenCnt = _S;  

   

 

 

 
Node_Prop<Int> _Stmp;  

Foreach (n: G. Nodes )  

  n._Stmp = 0;  

  Foreach (t: n. InNbrs )(...)  

    n._Stmp += 1;  

  n.teenCnt = n._Stmp;  

   

 

 

 

Compiler changes 
Sum into Foreach 

Replace scalar S 
with temporary node 
property Stmp 

Split Loops 

Edge Flipped 



There are still other details … 

 Defining message class 

 Merging states together 

 Optimizing temporary node properties 

 Merging congruent message classes 

 …… 

 Current State: 

 Can transform many algorithms into Pregel 

 Compiler-generated code exhibits little overhead 
compared to hand-written code 

 Still improving.   



Conclusion 

 Green-Marl 

 A DSL designed for graph analysis  

 Three benefits 

 Productivity  

 Performance 

 Portability 

 

 Project page: ppl.stanford.edu/main/green_marl.html 

 GitHub repository: github.com/stanford-ppl/Green-marl 

 

 



Thank you for attention 

 Questions? 

“Programs must be written for people to read, and 
only incidentally for machines to execute.”  

-- Abelson & Sussman 



Language Features 

 For graph analysis 

 Built-in data types 

 Node and edge property  

 Collections 

 Graph iteration and traversal 

 

 For parallel and distributed execution 

 Implicit parallelism 

 Consistency Model 

 Reduction 

 

 For extensibility 

 Embedded foreign syntax  

 

 



Types and Properties 

 Green-Marl is statically-typed languages 

 Primitive types 

 Graphs (directed, undirected),  

 Node/Edge, Node/Edge properties 

 Collections 

 Foreign types (later) 

 Procedure foo(G:  Graph,                // Graph  

              s:  Node(G) ,              // Node of G  

              A,B:  Node_Prop <Int >(G),   // Node Property of G  

              C:  Edge_Prop <Float >(G))  

{  

  // Property definition inside a scope  

  Node_Prop <Int >(G) T;  

  é 

}  



Types and Properties 

 Node/Edge 

 Node(graph) 

 Bound to a graph instance 

 Node/Edge Property 

 Node_Prop< prim_type > (graph)  

 Collection Types 

 Node_Set (graph) 

 Node_Order (graph) 

 Node_Seq (graph) 

 Node_Multiset (graph) 

 

 

Graph G1, G2;  

Node(G1) n;  

Node(G2) m;  

n = m; // type error  

Unique-
ness 

Ordered
-ness 

Set Y N 

Order Y Y 

Sequence N Y 

Multiset N N 



Graph Iteration and Traversal 

 Graph Iteration 

Foreach( n : G. Nodes) ( n.A > 0 )    

   é 

For  Sequential consistency 

Foreach   Parallel consistency  

 

Iterator and Range 

     Graph. Nodes/Edges  

     Node. Nbrs/InNbrs/OutNbrs  

       (UpNbrs/DownNbrs) é 

     Set.Items  

      

      Filter; do not execute body if 

false 

 Graph Traversal 

InBFS( n:G. Nodes From r )  

   ( n.A > 0 ) [ n.color == 0 ]     

{é} 

Root 

Filter 

Navigator; do not 

go further if false 

InDFS Depth-First Search Order 

InBFS   Breadth-First Search Order 

InRDFS,InRBFS  Reverse order 

traversal  



Implicit Parallelism 

 Parallel assignment  

 Reduction expression 

Graph  G;  

Node_Prop <Int >(G) x, y;  

 

// parallel assignment  

G.x = G.y + 1;  

// Reduction (expression form)  

Int  z = Sum (t: G. Nodes ) {t.x};  

Foreach  (n: G. Nodes )  

  n.x = n.y + 1;  

 

Int  z = 0;  

Foreach  (t: G. Nodes )  

   z += t.x; // Reduction (assignment form)  

  

They are  
Syntax sugars 



Consistency Model 

 Sequential Consistency  (For) 

 Parallel Consistency (Foreach) 

 Things happen in parallel … 

 No ordering is guaranteed btwn concurrent loops 

 No visibility is guaranteed btwn concurrent loops 

 Use reductions! 

Foreach  (s: G. Nodes ) {             

  Foreach  (t: s. Nbrs ) {  

    // Error (Warning)  

    // (w - w conflict) multiple s can write to the same t.A  

    // (r - w conflict) t.A  can be read and written by different s.  

    t.A  = t.A  + s.B *2;  

  }  

}  

s s 
t t t 

Foreach  (s: G. Nodes ) {  

  Foreach  (t: s. Nbrs ) {  

    // But compiler understands reduction  

    t.A  += s.B *2 ;  

  }  

}  



Reductions 

 Assignment Form 

Int  z = 0;  

Foreach (n : G. Nodes )  

   z += n.X;  

 Expression Form 

Int  z = Sum(n:G. Nodes ){n.X};  

Int  x,z;  

Node(G) m;  

Foreach (n : G. Nodes )  

   z <x, m> max= f(n.A) + n.B  <f(n.A), n > ;  

 Argmax/Argmin 

z: Max  
x, m: Argmax 

+= Sum{} 

*= Product{} 

&= All{} 

|= Any{} 

min= Min{} 

max= Max{} 



Bulk Synchronous Consistency 

 Deferred assignment 

 
Foreach (s: G. Nodes ) {  

  // Reading t.A gives óoldô value 

  s.A <= Sum (t: s. Nbrs ) {t.A} @ s;  

}  

// modification to property A becomes  

// visible at the end of s - loop  

Loop bound indicator: tells to 
which loop  this assignment is 
bound. 
(e.g. nested loop)  



Note 

 A note on parallel/sequential consistency and 
parallel execution 

 The compiler (runtime) may execute a foreach 
loop sequentially.  

 The compiler (runtime) may execute a for loop 
in parallel, as long as it can guarantee 
sequential consistency. 

 E.g. transactional memory or locks 



Data Access Analysis 

Procedure foo  ( G:Graph, A,B:  N_P<Int>( G); Z:INT)  

{  

  Int Y = 0 ;  

  Foreach (x:  G. Nodes )  

  {  

    If (x.B > 3)  

      Y += x.A ;  

  }  

  Z = Y;     

}  

WSet: (Y, -, always),  

DSet: (Y, -, always, (+=, x)) 
Rset: (A, x, always) 

DSet: (Y, -, cond, (+=, x)) 
Rset: (B, x, always) 
          (A, x, cond) 

Wset: (Y, -, cond) 
Rset: (B, Linear, always) 
          (A, Linear, cond) 

RSet: (Y, -, always),  
WSet: (Z, -, always), 

Wset: (Z, -, always) 
Rset: (B, Linear, always) 
          (A, Linear, cond) 



I’m not a graph guy. Do you suggest 
that I create my own DSL? 

 Yes, I encourage you.  

 Green-Marl is a stand-alone DSL, created from the scratch 

 This paper is written with 3 of my managers. 

 Current compiler was implemented in less than 6 months.  

 It is a doable job : (1) Type checker is simple. (2) Code 
generation is also not very complicated as you emit C++ code 

 Designing a good language is challenging, though. 

 

 There are easier ways, though. 

 Innovations in Embedded DSL 

 Delite [H. Chafi et al., PPoPP’11]  a framework for DSL 
creation  

 Green-Marl on Delite is also being developed. 



Can every graph algorithm be 
written in Green-Marl? 

 Good question. We hope so, don’t have proof. 

 We think we have all the necessary basic blocks 

 Basic node/edge iteration; graph traversal 

 Four collections (set/seq/order/bag) 

 Reductions 

 Foreign syntax / Foreign type may help you 

 Still, we are improving our language specification 

 We’re hearing from users, including professionals 

 Your opinion is valuable to us 


