ORACLE

Green-Marl: A DSL for Easy and Efficient
Graph Analysis

Sungpack Hong**, Hassan Chafi**, Eric Sedlar*,
and Kunle Olukotun*

*Pervasive Parallelism Lab, Stanford University
*Oracle Labs




Graph Analysis

m Classic graphs; New applications

= Artificial Intelligence, Computational Biology, ...

= SNS apps: Linkedin, Facebook,...
m Example> Movie Database

Graph Analysis: a process of

drawing out further information

from the given graph data-set

N

4

between any two (Australian) actors?”

Sam

“What would be the avg. hop-distance J

Worthington

James

Linda  Cameron N “Is he a central figure in the movie t &

Hamilton ~

network? How much?”

Sigourney
Weaver

“Do these actors work together

more frequently than others?”

: Ben Stiller Jack Black owen Wilsonl




More formally ...

= Graph Data-Set
= Graph G = (V,E): Arbitrary relationship (E) between
data entities (V)
s Property P: any extra data associated with each vertex
or edge of graph G (e.g. name of the person)

= Your Data-Set = (G, ) = (G, Py, P, ... )
= Graph analysis on (G, 1)
= Compute a scalar value
=« e.g. Avg-distance, conductance, eigen-value, ...

= Compute a (new) property
« e.g. (Max) Flow, betweenness centrality, page-rank, ...

= Identify a specific subset of G:

=« e.g. Minimum spanning tree, connected component, community
structure detection, ...




The Performance Issue

m Traditional single-core machines showed limited
performance for graph analysis problems
= A lot of random memory accesses + data does not fit
in cache
= Performance is bound to memory latency

= Conventional hardware (e.g. floating point units) does
not help much

> Use parallelism to accelerate graph analysis
Plenty of data-parallelism in large graph instances

Performance now depends on memory bandwidth, not
latency.

Exploit modern parallel computers: Multi-core CPU,
GPU, Cray XMT, Cluster, ...




New Issue:
Implementation Overhead

m [t is challenging to implement a graph
algorithm

= correctly

= + and efficiently

= + while applying parallelism

= + differently for each execution environment

m Are we really expecting a single (average-
level) programmer to do all of the above?




Our approach: DSL

We design a domain specific language (DSL) for graph analysis
The user writes his/her algorithm concisely with our DSL

The compiler translates it into the target language (e.g. parallel
C++ or CUDA)

[(1) Inherent data-parallelism J [(2) Good impl. templates

:StUItIXeti — Efficient (parallel)
esch pI on ! Implementation of
graph algorithm the given algorithm

Foreach (t: G. -

Nodes) | Eg;(;)qi;:c);{numN
L.slgma += ' _fetch_and_add

7 | (G.nodesi], ...)

DSL

| Target Language
(e.g. C++) ¢

Compiler

Source-to-Source Translation




Example: Betweenness Centrality

m Betweenness Centrality (BC)

= A measure that tells how ‘central’
a node is in the graph

= Used in social network analysis
= Definition

« How many shortest paths are
there between any two nodes
going through this node.

Cp(v)= ) 210

stvtey st




Init BC for every node
and begin outer-loop (s)

enness Centrality

[Brandes

Call— 0, veV: |7 c complex

for s € V do

Procedure comp_BC(G: Graph, BC: Node_PreEYE||ls)|

lteration

Foreach (s: G.Nodes) | -
// temporary values per Node Parallel

i"-l;::lde_Pr*oper*t}r-irlcu.at::-{E} sigma; N ;
Node Property<Float>(G) delta; ’ ASSIQHment

G.sigma ; f/ Initialize
G.delta ;

.sigma ; Parallel
Compute sigma from parents // BFS order iteration from s BFS

BFS
Order

InBF5(v: G.Nodes From s) {

v.sigma = Jf/ Summing over BFS parentis
Sum (w:v.UplNbrs) {w.sigma};

Reverse /{ Reverse-BFS order iteratiun to 3

BES InRBFS(v:G.Nodes To s)(v!=s) | \
Order v.delta = // Summing cuer BF r:hildr-en
Sum Ur v.DownNbrs) \

v.sigma / w.sigma * (1+ Y.del‘ta} L

‘ if w # s then Cglw] +— Cprlw] x d[w]; ! - Reduction
end

e Accumulate delta into BC




DSL Approach: Benefits

m Three benefits
= Productivity
= Portability
= Performance




Productivity Benefits

= A common limiting resource in software development
=» your brain power (i.e. how long can you focus?)

A C++ implementation
of BC from SNAP (a
parallel graph library
from GT):

= 400 line of codes (with
OpenMP)

Vs. Green-Marl* LOC: 24

*Green-Marl (Z1 2! ) means
Depicted Language in Korean




Productivity Benefits

Procedure Manual Green-Marl Source Misc
LOC LOC

~ 400 SNAP C++ openMP
Vertex Cover 71 21 SNAP C++ openMP
Conductance 42 10 SNAP C++ openMP
Page Rank 75 15 http:// .. C++ single thread
SCC 65 15 http:// .. Java single thread

m It is more than LOC
= Focusing on the algorithm, not its implementation
=» More intuitive, less error-prone
= Rapidly explore many different algorithms




Portability Benefits

n MUItlple Compiler targets Command line

argument
DSL DSL
Description Compiler

(Parallelized) Codes for
C++ Cluster

" SMP backcenc R e e

= Cluster back-end (*)
« For large instances

= We generate codes that work on Pregel API [Malewicz
et al. SIGMOD 2010]

= GPU back-end (*)
= For small instances
= We know some tricks [Hong et al. PPOPP 2011]




Performance Benefits

Back-end specific Optimized data structure
optimization & Code template

~
N
Target Arch. Threading Lib,
(SMP? GPU? (e.g.0OpenMP)
Distributed?) Graph Data Structure

: - Arch.
Parsing &
Checking Independent Depgl;glent >> Generation

Use High-level
Semantic
Information

Green - Marl Code

Target Code
(e.g. C++)




Arch-Indep-Opt: Loop Fusion

Foreach (t: G.
t.A N t.C + 1;
Foreach (s: G.

Nodes)

Nodes)

Loop
Fusion

Foreach (t: G. Nodes) {

s.B=s.A+s.C; /\%
\

t.A E;[;C +1;
tB=tA +t.C:
}

Zsyﬁ)ptim'\z

ation enabled by high-\eve\

tic) information

es
ue)

EXp (Seman

G.A=G.C+1;
G.B=G.A+G.C;
e

/I Grou Al*t] = C[*t];
I (vectg for (s =Nodeg.begin(); s != Nodes.end(); s++)

TSTULUI L, b’

for (t= Nodes.begin(); t = Nodes.end(); t++)

B[*s] = A[*s] + C[*s];

N

J |

Syntactic sugars may create a lot
of independent loops

C++ compiler cannot merge loops
(Independence not guaranteed)

|




Arch-Indep-Opt: Flipping~ &iond = ol

Outgoing Neighbors,

if m_y_B value is
m Graph-Specific Optimization W

Foreach (t: G. Nodes) Foreach (t: G. Nodes\f(t.B>O)

Foreach (s:t. InNbrs )(s.B>0) Foreach (s:t.  OutNbrs )
t.A +=1, S.A+=1;

(Why?) Reverse edges may not be
Counting number of

_ | available or expensive to compute
Incoming Neighbors

whose B value is positive




Arch-Dep-Opt : Selective Parallelization

m Flattens nested parallelism with a heuristic

Foreach (s: G. Nodes)(s.X >t.Y) { parallel region,
Foreach (r:s.  Nbrs){ heuristically
S.A += 1.B; Bl

Foreach (t: G. Nodes) { Compiler chooses}

Y) {
t!

} mi [ :
val P ‘m
1 [ arge

For (t: ( ; * # core is small.
Foreal ~oaesSTS.X > 1.Y) { val min= t.C * There is

For (r:s. Nbrs){ overhead for
s.A = s.A+r.B; parallelization
}

t.C *= s.A;

} normal read & write

J |
val =( t.C<val)?t.C:val Reductions became




Code-Gen: Saving DownNbrs in BFS

= Prepare data structure for reverse BFS trave( Generated code

forward traversal, only if required. saves edges to the
down-nbrs during

INBFS (: G. Nodes Froms ) { /é/ Preperation of BES - { forward traversal.

e
} /I Forward BFS (generated)
INRBFS { { e

Foreach (s:t.  DownNbrs) | /I'kis an out - edge of s __
: Id alysis

} . - ode an
| Optimization enabled by C

this automatically)

COd (i.e. nO BFS library could do
do

——er=TTC O 11 | é }J ’
reverse traversal J
/I Reverse BFS (generated)

{ é
/Generated code can //flériS(ankouté ) - edg{e of s
iterate only edges to it (1 edge bfs chid [K]) continue :
down-nbrs during ‘ ———€
| reverse traversal — b

7




Code-Gen: Reduction

m Reduction to Scalar=> Privatization

/[ reduction by minimum
Foreach (t: G. Nodes)
X min= t. A

4

/[ C++ OpenMP Implementation
#pragma omp parallel
{ /I Privatization
int  x_prv =x;
#pragma omp for
for (t=G.begin();...)
X_prv = min(x_prv, A[t);

Compiler mi
using high-leve

mics the way expe
| information

rts code,

T (X >= X_prv)
success = CAS(X, X_prv);

break ;

4




Code-Gen: Code Templates

m Data Structure
= Graph: similar to a conventional graph library
= Collections: custom implementation

om optimized

ted code also penefits fr

Genera
libraries
« Hong et al. PACT 2011 (for CPU and GPU)

= Better implementations coming; can be adapted
transparently

= DFS
=« Inherently sequential




Experimental Results

m Betweenness Centrality Implementation
(1) [Bader and Madduri ICPP 2006]
(2) [Madduri et al. IPDPS 2009]
= Apply some new optimizations
= Performance improved over (1) ~ x2.3 on Cray XMT
sParallel implementation available in SNAP library based
on (1) not (2) (for x86)

m Our Experiment
sStart from DSL description (as shown previously)

sLet the compiler apply the optimizations in (2),
automatically.




Parallel performance
difference

~N \

Resu

Effects of other optimizations
* Flipping Edges
« Saving BFS children

Nehalem (8 cores x

18
16 |
| +
13 | T k(ST
12 B, .
11 i e
10 e ;
21 7 el
7t éffﬁ B e -
b #r o 1
g yd - .
a | ? e sSNAF —+— ]
3 b GreenMarl —s— |
2 HEA MoFlipBe —&— 4
% ‘MoSaveCh, NoFlipBe —#— 1
2 4 6 & 10 12 14 16

Num threads

SN -00wW

T), 3%M nodes, 256M edges (two different sy

speed up

#

S GreenMarl ——
MoFlipBe —8&—
‘NoSavelh,NoFlipBe —#—

ﬁ’ e SNAP —+—
A

R
Jt'u
|
\
Y
!
1 L 1 | 1 1 1 1 1 1A 1 1

7
;g

0

4 6 4o 10 12 14

Num threads

=
()

(1) RMAT
Shows speed up over

Baseline: SNAP
(single thread)

Better single thread performance:
(1) Efficient BFS code
(2) No unnecessary locks

DI'IT]




Other Results

Sﬂegd up

Sﬂegd up

SHAP ——— |
GreenMarl ———
I MolLM —a—
FMalM, MoSRDC —%—

i SNAP ———
L. GreenMarl ———
[ MolM —8—
_NDLM,NDSRDE —_—

] \ Conductance

Perf similar to
manual impl.

| 1.5} «Loop Fusion
generated code pel‘fOl‘mrS\_ aﬁ . Pri\?itization
de through nigh-

M W o o CI‘l .._J
MnWARAOAWMdOA-10003
— T T T

o = ra ] o~ o - o

A= AW AA A -1
T T T T T T T

mpi\er
well as hand—tuned cO ‘

level O timizations

L optimized) —— -
GreenMarl —=— -

| _SNAP(corrected) % ] : Vertex Cover

SMAP (optimized) ——
GreerMarl —=— -

Original code
=>» data race;
Naive correction
(omp_critical)

ra oo o l'_|'| |:|"| _\-J
My C1o) QN CNOT QN 20 = O

\ oo,

L] = M o N T o

LT L
e e

M= AR AW MAA OO -1 0o
— T T T T T T T T T T

*Test and Test-set
* Privitization

Mum threads

= serialization

e




Other Results

speed up . . . .
[ ' IR SO0 OO O S SO \PageRank

GreserMarl —=— 1

= = M 1] BN i [my] -l

L N ey N R S p ]
— T T T T T T T T T T T
L 5 e R ) B LR
MR pkOOom -l
T T T T T T T T T T T

t Seq. Impl

NoDeferOpt —%— ]
. s .

(] 2

o ahl's Law
oarallelism is still imited by Amd _lrongly

T Connected
j/ﬁ_ﬁ; i x Component
St 1 1.5 / ]

1} ] L

DFS + BFS:
0.5 1 - Max Speed-up is 2

U

GreerMarl —=—

L s oreitar. —v— (Amdahl's Law)

NoBFSOpt —%—

o2 4 & 8 10 12 14 16 0 b
o2 4 6 8 10 12 14 16
Num threads

MU Lrreads




Usage Model

“Do you expect me to re-write my whole application
with your DSL?"

m No. Our src-to-src translation does not demand it.
= Okay, maybe a little glue code

Description Compiler

DSL J DSL

Parallel

Ct CUDA

J

| CHt |
| LIB (& RT) | LIB (& RT)

Graph Analysis
Routines

Your Complex Your Complex
Software Software




About Libraries

“Can I still use my custom library inside DSL?”

m Yes, via foreign syntax
= Similar to _asm_ mechanism in gcc

= Statements inside []
= Compiler simply keeps the text as-is in the generated

code
= Just tell the compiler what are being read/mutated.

Procedure foo(x: Int , U $User Type ){
e é
/l Read - Set:xandU
/[ Write - Set: X
[C_function(  $x, $U.get val()) il x1;
€ é

Any foreign (e.g. C++)
statement inside []




Hand-tuned Codes

“I, as an expert, can create faster code by hand-
tuning.”

mYes, I’'m sure you can
= DSL will be more helpful to non-experts. (Productivity)

mDSL enables rapid exploration of different algorithms

mYou can manually enhance compiler-generated code
= Compiler output is fairly human-readable C++ code

mDSL also provides portability




Generated
codes are

What about de gs;;"rg'mw

)

| Variable names

Will: (remain > C

Yes, another gooq

int32 L max wvi

Currently, we're node t from;
node ©t tor

C++ code level. edge t e
= [.e. you can use i

= This is no harde

= Generated outp

The compiler doe

= The compiler ca
Green-Marl synt

We also plan to i
= Will look like a MATLAB for graph

are preserved

Additional variable
names are derived
from original names




Tracing

Verbose = on

.fom comp -V=1 -D3=2 foo.gm <\ StOp a.fter Stage 2
|

2.11: Frontend. [Check EW

-

2.12: Frontend. [Remove va

fgm comp -V=1 -D5=3.2 foo.gm

JSagm comp -V=1 -D5=3.6 foo.gm
...3topping compiler after Stage 2| ...S5tage 3.2: Indep-Opt. [Regularize
.« . oLOPPping compller after Stage 3.2

.. .5topping compiler after Stage 3.6:Indep-Opt. |

Procedure foof PE——

- Procedure foo
5 @ Graph, : Graph, {

& : NP <Int>(G), L : N P <Int>(G),
B : N P <Int>(G)) : Int B2 LB abeslsll o Lus

G : Graph,

A : N P <Int>(&),

B : H P «<Int>(G)) = Int
Int

Iﬂt X; Int . Int

Int ¥; Int . Int
¥ = JSum(3: G.Nodes){s.a] ; Int : Int

¥ = Sum(t: G.Nodes){t.B} : S0 = 0; .
Foreach (3 : .Nodes) =
Return X * I; )

_50 += 3.L B 3 ; 51
Foreach (3 :
{

50 +=
51 4=

Foreach (t :
_51 +=

¥ = 351

Beturn ¥ * ¥;

Sums are expanded ],

\ Retu;n X * ¥;
into loops Loops are merged




Portability — Different Backends

m Different back-ends of Green-Marl

= Cache-coherent shared memory: current
[ = Pregel (Distributed Environment) : on-going ]
= Cray XMT : early investment

GPU : early investment

GraphLab (a different run-time): idea
brainstroming

Custom hardware: idea brainstorming
RamCloud: idea brainstorming




Capacity Issue in Graph Analysis

m Large graph + Associated data
> Main Memory

Disk-based system (i.e. virtual memory) ?

= A lot of random accesses =» disk latency kills you
Stand-alone distributed program?

= Large development overhead

Map-Reduce (Hadoop)?

= Unable to keep state across iterations =»
performance loss

= Pregel (or its replicates)




Pregel (from Google)

m Map-Reduce like framework with enhancement

= Iterative, Sensitive, Vertex-centric
= A vertex can maintain its associated data
= Single compute() function

=« Called for every vertex by the system
= At each time step

Framework provides APIs for neighborhood
communication Step |

=« Messages are delivered at
the next time step.

{compute() X

Step I+1




Implementation Issue

Automatic Translation?
= New Iss r algorithm ha converted

for Pre Need context Need
management boilerplate
extends é code

/[l Count number of teen followers

// for each node(person) in a SN

Foreach (n: G. Nodes) {
n.teenCount =

compute(é){

Message ‘(step==1) {

Count (tn. InNbrs ) Sending (this .age >= 10 &&
(t.age>=10 && t.age<20); this .age <= 20) Message is
} sendNeighbors ( always
/I Compute average number of new IntMessage(1 pushed
/[ teen - followers of people of ;
Il certain age else if (step == 2) { not pulled
Float avgAgeTeenFollowers = this .teenCount = 0;

Avg(n:G. Nodes)(n.age>K)
{n.teenCnt};

r: getReceived())
ll\?/leSS_aQe Is.teenCount +=
eceiving r.IntValue();

mperative Your algorithm b need some
else if (step = 3) { tricks for
if (this.age > K) {

Based on global
Some global- - € computation
scoped sequential izl i
computation Pregel Implementation




Issues to be solved

m Sequential computation
Globally scoped variables
Management of Execution Context
Communication (message sending/receiving)
Enforcing Push-based messaging




Our framework

m Pregel (from Google) is not open to public.

m GPS: an implementation of Pregel from
Stanford, with Semih Salihoglu

m With enhancements

= Optimized for performance

= x5~10 faster than Giraph (a popular Pregel
implementation from Yahoo/Apache)

= Elegant API for global objects and sequential
computation




Handling Sequential Portion

m Your algorithm may include sequential portion

= E.g. termination based on global sum of difference
in page rank algorithm

m GPS provides a nice API for this:
= Mmaster class, master.compute()

{Alternating execution 1

/

class master class vertex

{ {

void compute() { void compute() {

Sequential (global) }| Parallel (vertex-
computation wise) computation

/




Globally shared variables

m Another useful API: Global object map

class master {
void compute() {
é e

global . put ( fx o, void compute() {

new IntVal(1));

class vertex {

é
Int X=
global . get ( A X
ntVal();

Master puts an
value object to the
map

y  The object is

Map is cleared at the
end of each
computation step

broadcast to every

\ vertex-compute()

~

vertices at following

)




Compiler Translation:

Global Object Management ( Node property

Procedure
K: Int) {

foo( age,teenCnt :N_P<Int>,
e
Int S=0; // globally scoped
Foreach (n:G. Nodes)
If (n. age>K)

S += n. teenCnt_;

Compiler knows when
the variable is used

master copy of
global variables

class mast
int S;
int K
void c o

Lte() { é
S = 0|/ é

global
é
S+= global

. put (A Hew,IntvVal(K));

.get (ASo).intVal

class vertex { \/
int age;
int teenCnt;
void compute() {
é
int K=
global . get (AKO) . i nt
if (this .age > K){
global . put ( i Bew,
IntSumVal (this.teenCnt);

A

é } I—

Reduction is

special API

Limplemented via




: n.teenCnt = 61) : outphases
—..—I_—_'g'a ________________ (‘ zs..‘l of algorithm [class vertex |
nt S=
|
T e S . Y vod compute(..
Fo:feach (n:>GK. Nodes) { (3) ': Compller e stateg ( ) |
n.age P
S(+: %.teer)1Cnt; : generates _ global . get (A_stat|g
I I (4 state-machine / intval();
at master :
class master ({ / switch (_state) {
int _state: / < }case 1:..
void compute() {
SCase - do, ctate_10) Currentstate is | oy o _sate 30
T broadcast to int K= &
}} vertices if (this.age > K)
void do_state_3~(){ ) \_ Y
global .put ( fi K onew Intval (K)); }
startVertex = true;

Compiler Translation:
Execution Context & Sequential Portion

Foreach (n: G. Nodes) { |

_stateNxt =4}

Compiler can figure

|




Compiler Translation:
Commumcatlon

é

_(

Foreach (n: G. Nodes){

}

If (n.age >=10..)
Foreach (t:n. Nbrs)
t.teenCnt += 1,

}

Nested loop implies
communication

BN

e ...
Communication Is
split into two

class vertex {...

void do_state 1(){
if (thls .age >-=

< consecutive states:
sending + receiving/

I

sendNbrs (new Ms g ( e) ) :
} x Outer-loop becomes

void do_state 2(){
for (Msgr: getRcvd () {
this .teenCnt += 1;

}

sending side

-

~ Inner-loop becomes
receiving side

-




Enforcing Push-based algorithm

Foreach (n: G. Nodes) This nested loop is For every n, push
Foreach (t:n. Nbrs) L push. n.Y to out-neighbor
t . X +=f(t.Y, n.2); \ t to update t.X
Foreach (n: G. Nodes) This nested loop Is a
Foreach (t:n. Nbrs) pull. (cannot be For every n, pull .Y
n. X+=g(tY, n.Z); implemented wit from out-neighbor t
API) to update n.X

N Z
Y W @) [ ()
Foreach (t: G. Nodes) | ;
Foreach (n:t. InNbrs ) o \
n.X +=g(t.Y, n.2); G @ @

S~ 7
Compiler transforms For every t, push t.Y
it into push by to in-neighbor n to

flipping edges update n.X




Compiler Transformation:
Applying edge-flipping

Foreach (n: G. Nodes) L

Edge Flipped

n.teenCnt =

Sunm(t:n.  InNbrs )(...){1};

“

-

-

Foreach (n: G. Nodes)
Int S=0;
Foreach (t: n.

_S+=1;

InNbrs )(...)

Compiler changes
Sum into Foreach

——

N| Node Prop<iInt> _ Stmp;
Foreach (n: G. Nodes)
n. Stmp = 0;

| Foreach (t:G. Nodes) (...)

Foreach (n:n.
n. Stmp +=1;

Nbrs )

Foreach (n: G. Nodes)

n.teenCnt = n._Stmp; AK
Z

n.teenCnt = _S;

Node Prop<Int> _ Stmp;
Foreach (n: G. Nodes)
n._Stmp = 0;
Foreach (t: n.
n._Stmp +=1;
n.teenCnt = n._Stmp;

InNbrs )(...)

/Replace scalar S
with temporary node
property Stmp

/

{

Split Loops

Node Prop<iInt> _ Stmp;
Foreach (n: G. Nodes)
n. Stmp = 0;

Foreach (n: G. Nodes)
Foreach (t:n. InNbrs )(...)
n. Stmp +=1;

Foreach (n: G. Nodes)
n.teenCnt = n._Stmp;




There are still other details ...

Defining message class

Merging states together

Optimizing temporary node properties
Merging congruent message classes

> Current State:
> Can transform many algorithms into Pregel

> Compiler-generated code exhibits little overhead
compared to hand-written code

> Still improving.




Conclusion

= Green-Marl

= A DSL designed for graph analysis
m Three benefits

= Productivity

= Performance

= Portability

m Project page: ppl.stanford.edu/main/green_marl.html
= GitHub repository: github.com/stanford-ppl/Green-marl




Thank you for attention

m Questions?

“Programs must be written for people to read, and
only incidentally for machines to execute.”
-- Abelson & Sussman




Language Features

m For graph analysis
= Built-in data types
= Node and edge property
= Collections
= Graph iteration and traversal

m For parallel and distributed execution
= Implicit parallelism
= Consistency Model
= Reduction

m For extensibility
= Embedded foreign syntax




Types and Properties

m Green-Marl is statically-typed languages
Primitive types
Graphs (directed, undirected),
Node/Edge, Node/Edge properties
Collections
Foreign types (later)

Procedure foo(G: Graph, Il Graph
s: Node(G) , /[ Node of G
A,B: Node_Prop <Int >(G), // Node Property of G
C:. Edge Prop <Float >(G))

{
I/l Property definition inside a scope
Node_Prop <Int >(G) T;

é

}




Types and Properties

s Node/Edge Graph G1, G2;
Node(G1) n;
= Node(graph) Node(G2) m:

= Bound to a graph instance n=m; //type error
= Node/Edge Property

= Node_ Prop< prim_type > (graph)
m Collection Types

ER N

Node_ Order (graph)

Node_ Seq (graph)

Node_ Multiset (graph) Order

Y Y
Sequence N Y
Multiset N N




Graph lteration and Traversal

m Graph Iteration

s Graph Traversal | Root

& \

S

For = Sequential consistency

Foreach = Parallel consistency

e}

Foreach( n:G. Nodes)( nA>0 ) INBFS( n:G. Nodes From r}——
L~ (n.A>0 )[ n.color== ]
( {

\

| \

Iterator and Range
Graph. Nodes/Edges
Node. Nbrs/InNbrs/OutNbrs
(UpNbr s/ Down
Set.ltems

INDFS =» Depth-First Search Order
INBFS =>» Breadth-First Search Order
INRDFS,INRBFS =>» Reverse order

traversal

N b/r s )

false

Filter; do not execute body if

Filter

) B

Navigator; do not

go further if false




Implicit Parallelism

m Parallel assignment
m Reduction expression

Graph G;
Node_ Prop <Int >(G) x, y;

/[ parallel assignment
Gx=G.y+1,;

/[ Reduction (expression form)

Int z= Sum (t: G. Nodes) {t.x};

They are
Syntax sugars

RS

Foreach (n: G. Nodes)
nx=n.y+1;

Int z=0;
Foreach (t: G. Nodes)

Z +=t.X; /[ Reduction (assignment form)




Consistency Model

m Sequential Consistency (For)
m Parallel Consistency (Foreach)
= Things happen in parallel ...

= No ordering is guaranteed btwn concurrent loops
= No visibility is guaranteed btwn concurrent loops

m Use reductions!

Foreach (s: G.Nodes) {
Foreach (t: s. Nbrs) { SPRN
/[ Error (Warning) t 1)

N

Il (w - w conflict) multiple s can write to the samé

/I (r - w conflict) t.A can be read and written by different s.
tA = tA + s.B?*2;

}

t.A

Foreach (s: G.Nodes) {
} Foreach (t: s. Nbrs){
// But compiler understands reduction

tA += s.B*2;
}

}




Reductions

m Assignment Form m Expression Form

Int z=0;
Foreach (n: G. Nodes)
Z += n.X;

Int z= Sum(n:G. Nodes){n.X};

Sum{}
Product{ }
All{}
Any{}
Min{}

= Argmax/Argmin Max{}

Int Xx,z;

Node(G) m;

Foreach (n: G. Nodes)
z<x,m> max= f(n.A) +n.B

Z: Max
X, m: Argmax




Bulk Synchronous Consistency

m Deferred assignment

Foreach (s: G. Nodes) {
/|l Reading t.A gives 00l do value

S.A <= Sum (t:s. Nbrs) {t.A} @ s;
}
/[ modification to property A becomes
I/ visible at the end of s - loop

4

/

Loop bound indicator: tells to
which loop this assignment is
bound.

(e.g. nested loop)




Note

= A note on parallel/sequential consistency and
parallel execution

= The compiler (runtime) may execute a foreach
loop sequentially.

= The compiler (runtime) may execute a for loop

in parallel, as long as it can guarantee
sequential consistency.

« E.g. transactional memory or locks




Data Access Analysis

_

Wset: (Z, -, always)
Rset: (B, Linear, always)
(A, Linear, cond)

Procedure foo (GGraph, AB: N_P<Int>( Q: ZINT)
{

Int Y=0 ; — | wsSet: (Y, -, always),

Foreach (x: G.Nodes)

{ T~ Wset: (Y, -, cond)

Rset: (B, Linear, always)
It (x.B>3) (A, Linear, cond)
Y +=Xx.A: \\\\\\\\\\\\

} DSet: (Y, -, cond, (+=, X))

Z=Y; Rset: (B, x, always)
} (A, x, cond)

4

Rset: (A, X, always)

DSet: (Y, -, always, (+=, X))

RSet: (Y, -, always),
WSet: (Z, -, always),




I’m not a graph guy. Do {ou suggest
that | create my own DSL?

= Yes, I encourage you.

m Green-Marl is a stand-alone DSL, created from the scratch
This paper is written with 3 of my managers.
Current compiler was implemented in less than 6 months.

It is a doable job : (1) Type checker is simple. (2) Code
generation is also not very complicated as you emit C++ code

Designing a good language is challenging, though.

m There are easier ways, though.
= Innovations in Embedded DSL

= Delite [H. Chafi et al., PPoPP’11] = a framework for DSL
creation

= Green-Marl on Delite is also being developed.




Can every graph algorithm be
written in Green-Marl?

m Good question. We hope so, don’t have proof.
= We think we have all the necessary basic blocks
= Basic node/edge iteration; graph traversal
= Four collections (set/seqg/order/bag)
= Reductions
m Foreign syntax / Foreign type may help you

m Still, we are improving our language specification
= We're hearing from users, including professionals
= Your opinion is valuable to us




