
Green-Marl: A DSL for Easy and Efficient

Graph Analysis

Sungpack Hong*+, Hassan Chafi*+, Eric Sedlar+,

and Kunle Olukotun*

*Pervasive Parallelism Lab, Stanford University
+Oracle Labs

Graph Analysis

 Classic graphs; New applications

 Artificial Intelligence, Computational Biology, …

 SNS apps: Linkedin, Facebook,…

 Example> Movie Database

James
Cameron

Avatar

Sigourney
Weaver

Aliens

Sam
Worthington

Linda
Hamilton

……

“Is he a central figure in the movie
network? How much?”

Kevin Bacon

“Do these actors work together
more frequently than others?”

Ben Stiller Jack Black Owen Wilson

Graph Analysis: a process of
drawing out further information
from the given graph data-set

“What would be the avg. hop-distance
between any two (Australian) actors?”

More formally …

 Graph Data-Set

 Graph G = (V,E): Arbitrary relationship (E) between
data entities (V)

 Property P: any extra data associated with each vertex
or edge of graph G (e.g. name of the person)

 Your Data-Set = (G, Π) = (G, P1, P2, …)

 Graph analysis on (G, Π)

 Compute a scalar value

 e.g. Avg-distance, conductance, eigen-value, …

 Compute a (new) property

 e.g. (Max) Flow, betweenness centrality, page-rank, …

 Identify a specific subset of G:

 e.g. Minimum spanning tree, connected component, community
structure detection, …

The Performance Issue

 Traditional single-core machines showed limited
performance for graph analysis problems

 A lot of random memory accesses + data does not fit
in cache

  Performance is bound to memory latency

 Conventional hardware (e.g. floating point units) does
not help much

 Use parallelism to accelerate graph analysis

 Plenty of data-parallelism in large graph instances

 Performance now depends on memory bandwidth, not
latency.

 Exploit modern parallel computers: Multi-core CPU,
GPU, Cray XMT, Cluster, ...

New Issue:
Implementation Overhead

 It is challenging to implement a graph
algorithm

 correctly

 + and efficiently

 + while applying parallelism

 + differently for each execution environment

 Are we really expecting a single (average-
level) programmer to do all of the above?

Our approach: DSL

 We design a domain specific language (DSL) for graph analysis

 The user writes his/her algorithm concisely with our DSL

 The compiler translates it into the target language (e.g. parallel
C++ or CUDA)

Efficient (parallel)
Implementation of
the given algorithm

For(i=0;i<G.numN
odes();i++) {
 __fetch_and_add
(G.nodes[i], …)

Foreach (t: G.
Nodes)
 t.sigma +=
…

Intuitive
Description of a
graph algorithm

……

Edgeset

Foreach

BFS

(1) Inherent data-parallelism (2) Good impl. templates

(3) High-level optimization

DSL
Target Language
(e.g. C++)

DSL
Compiler

Source-to-Source Translation

Example: Betweenness Centrality

 Betweenness Centrality (BC)

 A measure that tells how ‘central’
a node is in the graph

 Used in social network analysis

 Definition

 How many shortest paths are
there between any two nodes
going through this node.

Ayush K.
Kehdekar

Kevin
Bacon

High BC Low BC

[Image source; Wikipedia]

Example: Betweenness Centrality

[Brandes 2001]

s

v

w w w

Reverse
BFS

Order

Compute delta from children

 Queues, Lists,
Stack…
Is this
parallelizable?

Looks
complex

s

w w

v

BFS
Order

Compute sigma from parents

Parallel
Assignment

Parallel
BFS

Parallel
Iteration

Init BC for every node
and begin outer-loop (s)

Accumulate delta into BC

Reduction

DSL Approach: Benefits

 Three benefits

 Productivity

 Portability

 Performance

Productivity Benefits

 A common limiting resource in software development

  your brain power (i.e. how long can you focus?)

A C++ implementation
of BC from SNAP (a
parallel graph library
from GT):

≈ 400 line of codes (with
OpenMP)

Vs. Green-Marl* LOC: 24

*Green-Marl (그린 말) means
Depicted Language in Korean

Productivity Benefits

 It is more than LOC

  Focusing on the algorithm, not its implementation

  More intuitive, less error-prone

  Rapidly explore many different algorithms

Procedure Manual
LOC

Green-Marl
LOC

Source Misc

BC ~ 400 24 SNAP C++ openMP

Vertex Cover 71 21 SNAP C++ openMP

Conductance 42 10 SNAP C++ openMP

Page Rank 75 15 http:// .. C++ single thread

SCC 65 15 http:// .. Java single thread

Portability Benefits

 Multiple compiler targets

 SMP back-end

 Cluster back-end (*)

 For large instances

 We generate codes that work on Pregel API [Malewicz
et al. SIGMOD 2010]

 GPU back-end (*)

 For small instances

 We know some tricks [Hong et al. PPOPP 2011]

DSL
Description

DSL
Compiler

(Parallelized)
C++

LIB (& RT)

Command line
argument

CUDA for
GPU

LIB (& RT)

Codes for
Cluster

LIB (& RT)

Performance Benefits

Parsing &
Checking

Arch.
Independent

Opt

Arch.
Dependent

Opt

Code
Generation

Green - Marl Code

Target Code

(e.g. C++)

Target Arch.
(SMP? GPU?
Distributed?)

Threading Lib,
(e.g.OpenMP)
Graph Data Structure

Compiler

Use High-level
Semantic
Information

Back-end specific
optimization

Optimized data structure
& Code template

G.A = G.C + 1; // Group Assignment

G.B = G.A + G.C; // (vector - like operation)

é

ax

Syntactic sugars may create a lot
of independent loops

Syntactic sugar
Expansion

Arch-Indep-Opt: Loop Fusion

Foreach (t: G. Nodes)

 t.A = t.C + 1;

Foreach (s: G. Nodes)

 s.B = s.A + s.C;

Foreach (t: G. Nodes) {

 t.A = t.C +1;

 t.B = t.A + t.C;

}

Loop
Fusion

Map<Node, int> A, B, C;

List<Node>& Nodes = G.getNodes();

List<Node>::iterator t, s;

for (t = Nodes.begin(); t != Nodes.end(); t++)

 A[*t] = C[*t];

for (s = Nodes.begin(); s != Nodes.end(); s++)

 B[*s] = A[*s] + C[*s];

C++ compiler cannot merge loops
(Independence not guaranteed)

“set” of nodes
(elems are unique)

Arch-Indep-Opt: Flipping Edges

 Graph-Specific Optimization

Foreach (t: G. Nodes)

 Foreach (s: t. InNbrs)(s.B>0)

 t.A += 1;

Foreach (t: G. Nodes)(t.B>0)

 Foreach (s: t. OutNbrs)

 s.A += 1;

t

s s

s

t

s

Counting number of
Incoming Neighbors
whose B value is positive

Adding 1 to for all
Outgoing Neighbors,
if my B value is
positive

(Why?) Reverse edges may not be
available or expensive to compute

Arch-Dep-Opt : Selective Parallelization

 Flattens nested parallelism with a heuristic

Foreach (t: G. Nodes) {

 Foreach (s: G. Nodes)(s.X > t.Y) {

 Foreach (r: s. Nbrs) {

 s.A += r.B;

 }

 t.C *= s.A;

 }

 val min= t.C

}

Three levels of
nested parallelism
+ reductions

For (t: G. Nodes) {

 Foreach (s: G. Nodes)(s.X > t.Y) {

 For (r: s. Nbrs) {

 s.A += r.B;

 }

 t.C *= s.A;

 }

 val min= t.C

}

Compiler chooses
parallel region,
heuristically

For (t: G. Nodes) {

 Foreach (s: G. Nodes)(s.X > t.Y) {

 For (r: s. Nbrs) {

 s.A = s.A + r.B;

 }

 t.C *= s.A;

 }

 val = (t.C < val) ? t.C : val;

}

Reductions became
normal read & write

 [Why?]
• Graph is large
• # core is small.
• There is
overhead for
parallelization

Code-Gen: Saving DownNbrs in BFS

 Prepare data structure for reverse BFS traversal during
forward traversal, only if required.

InBFS (t: G. Nodes From s) {

 é

}

InRBFS {

 Foreach (s: t. DownNbrs)

 é

}

// Preperation of BFS

é

// Forward BFS (generated)

{ é

 // k is an out - edge of s

 for (k é)

 node_t child = get_node(k);

 if (is_not_visited(child)) {

 é; // normal BFS code here

 edge_bfs_child[k] = true;

 } }

é}

// Reverse BFS (generated)

{ é

 // k is an out - edge of s

 for (k é) {

 if (! edge_bfs_child [k]) continue ;

 é

} }

Compiler detects that
down-nbrs are used in
reverse traversal

Generated code
saves edges to the
down-nbrs during
forward traversal.

Generated code can
iterate only edges to
down-nbrs during
reverse traversal

Code-Gen: Reduction

 Reduction to Scalar Privatization

// reduction by minimum

Foreach (t: G. Nodes)

 x min= t. A;

// C++ OpenMP Implementation

#pragma omp parallel

{ // Privatization

 int x_prv = x;

 #pragma omp for

 for (t=G.begin();...)

 x_prv = min(x_prv, A[t]);

 // Test and Test - set

 if (x_prv < x) {

 bool success = false ;

 while (!success) {

 if (x >= x_prv) break ;

 success = CAS(x, x_prv);

 }

 }

}

Code-Gen: Code Templates

 Data Structure

 Graph: similar to a conventional graph library

 Collections: custom implementation

 Code Generation Template

 BFS

 Hong et al. PACT 2011 (for CPU and GPU)

 Better implementations coming; can be adapted
transparently

 DFS

 Inherently sequential

Experimental Results

 Betweenness Centrality Implementation

(1) [Bader and Madduri ICPP 2006]

(2) [Madduri et al. IPDPS 2009]

  Apply some new optimizations

  Performance improved over (1) ~ x2.3 on Cray XMT

Parallel implementation available in SNAP library based

 on (1) not (2) (for x86)

 Our Experiment

Start from DSL description (as shown previously)

Let the compiler apply the optimizations in (2),
automatically.

(two different synthetic graphs)

Experimental Results

Better single thread performance:
(1) Efficient BFS code
(2) No unnecessary locks

Effects of other optimizations
• Flipping Edges

• Saving BFS children

Shows speed up over
Baseline: SNAP
(single thread)

Parallel performance
difference

Nehalem (8 cores x 2HT), 32M nodes, 256M edges

Other Results

Conductance

Perf similar to
manual impl.

•Loop Fusion
• Privitization

Vertex Cover

Original code
 data race;

Naïve correction
(omp_critical)
 serialization

•Test and Test-set
• Privitization

Other Results

PageRank

Strongly
Connected
Component

DFS + BFS:
Max Speed-up is 2

(Amdahl's Law)

Compare against Seq. Impl

Usage Model

“Do you expect me to re-write my whole application
with your DSL?”

 No. Our src-to-src translation does not demand it.

 Okay, maybe a little glue code

Your Complex
Software

DSL
Description

DSL
Compiler

Parallel
C++

CUDA

……

LIB (& RT) LIB (& RT)

Graph Analysis
Routines

Your Complex
Software

Rewrite

Link

About Libraries

“Can I still use my custom library inside DSL?”

 Yes, via foreign syntax

 Similar to _asm_ mechanism in gcc

 Statements inside []

  Compiler simply keeps the text as-is in the generated
code

 Just tell the compiler what are being read/mutated.

Procedure foo(x: Int , U: $User_Type) {

 éé

 // Read - Set: x and U

 // Write - Set: x

 [C _function($x , $U.get_val())]::[x] ;

 éé

}

 Any foreign (e.g. C++)
statement inside []

Hand-tuned Codes

“I, as an expert, can create faster code by hand-
tuning.”

Yes, I’m sure you can

 DSL will be more helpful to non-experts. (Productivity)

DSL enables rapid exploration of different algorithms

You can manually enhance compiler-generated code

 Compiler output is fairly human-readable C++ code

DSL also provides portability

What about debugging?

 Yes, another good question.

 Currently, we’re now relying on debugging at generated
C++ code level.

 I.e. you can use gdb.

 This is no harder than you’re using a graph library (in theory)

 Generated output is human readable.

 The compiler does (should) not make mistakes.

 The compiler can dump out the intermediate results (in
Green-Marl syntax) at each (sub-)step .

 We also plan to implement ‘interpreter’ environment.

 Will look like a MATLAB for graph.

Variable names
are preserved

Additional variable
names are derived
from original names

Generated
codes are
normal C++
program

Tracing the Compiler’s Work
Verbose = on
Stop after Stage 2.

Sums are expanded
into loops Loops are merged

Portability – Different Backends

 Different back-ends of Green-Marl

 Cache-coherent shared memory: current

 Pregel (Distributed Environment) : on-going

 Cray XMT : early investment

 GPU : early investment

 GraphLab (a different run-time): idea
brainstroming

 Custom hardware: idea brainstorming

 RamCloud: idea brainstorming

Capacity Issue in Graph Analysis

 Large graph + Associated data

 ≥ Main Memory

 Disk-based system (i.e. virtual memory) ?

 A lot of random accesses  disk latency kills you

 Stand-alone distributed program?

 Large development overhead

 Map-Reduce (Hadoop)?

 Unable to keep state across iterations 
performance loss

  Pregel (or its replicates)

Pregel (from Google)

 Map-Reduce like framework with enhancement

 Iterative, Sensitive, Vertex-centric

 A vertex can maintain its associated data

 Single compute() function

 Called for every vertex by the system

 At each time step

 Framework provides APIs for neighborhood
communication

 Messages are delivered at

the next time step.

Node1 Node n

Int x;
Int y;

compute()

Node1 Node n

compute()

Step I

Step I+1

Implementation Issue

 New Issue: Your algorithm has to be converted
for Pregel API

// Count number of teen followers

// for each node(person) in a SN

Foreach (n: G. Nodes) {

 n.teenCount =

 Count (t:n. InNbrs)

 (t.age>=10 && t.age<20);

}

// Compute average number of

// teen - followers of people of

// certain age

Float avgAgeTeenFollowers =

 Avg(n:G. Nodes)(n.age>K)

 {n.teenCnt};

class foo extends é {

éé

 public void compute(é){

 if (step == 1) {

 if (this .age >= 10 &&

 this .age <= 20)

 sendNeighbors (

 new IntMessage(1));

 }

 else if (step == 2) {

 this .teenCount = 0;

 for (r: getReceived())

 this.teenCount +=

 r.IntValue();

 }

 else if (step = 3) {

 if (this.age > K) {

 é.

Imperative Your algorithm

Based on
random reading
Based on
random reading

Need
boilerplate
code

Need context
management

Message
Sending

Message
Receiving

Message is
always
pushed,
not pulled

need some
tricks for
global
computation

Pregel Implementation

Some global-
scoped sequential
computation

Automatic Translation?

Issues to be solved

 Sequential computation

 Globally scoped variables

 Management of Execution Context

 Communication (message sending/receiving)

 Enforcing Push-based messaging

……

Our framework

 Pregel (from Google) is not open to public.

 GPS: an implementation of Pregel from
Stanford, with Semih Salihoglu

 With enhancements

 Optimized for performance

 x5~10 faster than Giraph (a popular Pregel
implementation from Yahoo/Apache)

 Elegant API for global objects and sequential
computation

class vertex

{

 void compute() {

 ...

 }

}

GPS app.

Handling Sequential Portion

 Your algorithm may include sequential portion

 E.g. termination based on global sum of difference
in page rank algorithm

 GPS provides a nice API for this:

 master class, master.compute()

class master

{

 void compute() {

 ...

 }

} Parallel (vertex-
wise) computation

Sequential (global)
computation

Alternating execution

Globally shared variables

 Another useful API: Global object map

class master {

 void compute() {

 éé

 global .put(ñxò,

 new IntVal(1));

 }

}

class vertex {

 void compute() {

 é

 int x=

 global .get(ñxò)

 .intVal();

 }

}
Master puts an
value object to the
map The object is

broadcast to every
vertices at following
vertex-compute()

Map is cleared at the
end of each
computation step

Compiler Translation:
Global Object Management
Procedure foo(age,teenCnt :N_P<Int>,

 K: Int) {

é

Int S=0; // globally scoped

Foreach (n:G. Nodes)

 If (n. age>K)

 S += n. teenCnt ;

class master {

 int S;

 int K;

 void compute() { é

 S = 0; é

 global .put(ñKò, new IntVal(K));

 é

 S+= global .get(ñSò).intVal();

é }

class vertex {

 int age;

 int teenCnt;

 void compute() {

 é

 int K=

 global .get(ñKò).intVal();

 if (this .age > K){

 global .put(ñSò, new

 IntSumVal (this.teenCnt);

 }

 é

}

master copy of
global variables Compiler knows when

the variable is used

Node property

Node property Reduction is
implemented via
special API

Compiler Translation:
Execution Context & Sequential Portion

Foreach (n: G. Nodes) {

 n.teenCnt = é

}

Int S=0;

Foreach (n:G. Nodes) {

 If (n.age>K)

 S += n.teenCnt;

}

Compiler can figure
out phases
of algorithm

class master {

 int _state;

 void compute() {

 switch (_state) {

 case 1: do_state_1();

 ...

 } }

 void do_state_3() {

 global .put (ñKò, new IntVal (K));

 startVertex = true;

 _stateNxt = 4; }

(1)

(2)

(3)
Compiler
generates
state-machine
at master (4)

class vertex {

 ...

 void compute(..) { é

 int _state =

 global .get(ñ_stateò)

 .intVal();

 switch (_state) {

 case 1: ..

 }

 }

 void do_state_3() {

 int K= é

 if (this.age > K)

 ...

 }

Current state is
broadcast to
vertices

Compiler Translation:
Communication

é

Foreach (n: G. Nodes){

 If (n.age >= 10 ...)

 Foreach (t: n. Nbrs) {

 t.teenCnt += 1;

 }

}

Nested loop implies
communication

class vertex { ...

 void do_state_1() {

 if (this .age >= 10 é) {

 sendNbrs (new Msg(é));

 }

 void do_state_2() {

 for (Msg r: getRcvd ()) {

 this .teenCnt += 1;

 }

Communication is
split into two
consecutive states:
 sending + receiving

Outer-loop becomes
sending side

Inner-loop becomes
receiving side

Enforcing Push-based algorithm

Foreach (n: G. Nodes)

 Foreach (t: n. Nbrs)

 t .X += f(t.Y, n.Z);

Foreach (n: G. Nodes)

 Foreach (t: n. Nbrs)

 n. X += g(t.Y, n.Z);

This nested loop is a
push.

This nested loop is a
pull. (cannot be
implemented with
API)

Foreach (t : G. Nodes)

 Foreach (n: t. InNbrs)

 n.X += g(t.Y, n.Z);

Compiler transforms
it into push by
flipping edges

n1 n2

t1 t2

n1 n2

t1 t2

For every n, push
n.Y to out-neighbor
t to update t.X

For every n, pull t.Y
from out-neighbor t
to update n.X

For every t, push t.Y
to in-neighbor n to
update n.X

Node_Prop<Int> _Stmp;

Foreach (n: G. Nodes)

 n._Stmp = 0;

Foreach (t : G. Nodes) (...)

 Foreach (n: n. Nbrs)

 n._Stmp += 1;

Foreach (n: G. Nodes)

 n.teenCnt = n._Stmp;

Node_Prop<Int> _Stmp;

Foreach (n: G. Nodes)

 n._Stmp = 0;

Foreach (n: G. Nodes)

 Foreach (t: n. InNbrs)(...)

 n._Stmp += 1;

Foreach (n: G. Nodes)

 n.teenCnt = n._Stmp;

Compiler Transformation:
Applying edge-flipping

Foreach (n: G. Nodes)

 n.teenCnt =

 Sum(t:n. InNbrs)(...){1};

Foreach (n: G. Nodes)

 Int _S = 0;

 Foreach (t: n. InNbrs)(...)

 _S += 1;

 n.teenCnt = _S;

Node_Prop<Int> _Stmp;

Foreach (n: G. Nodes)

 n._Stmp = 0;

 Foreach (t: n. InNbrs)(...)

 n._Stmp += 1;

 n.teenCnt = n._Stmp;

Compiler changes
Sum into Foreach

Replace scalar S
with temporary node
property Stmp

Split Loops

Edge Flipped

There are still other details …

 Defining message class

 Merging states together

 Optimizing temporary node properties

 Merging congruent message classes

 ……

 Current State:

 Can transform many algorithms into Pregel

 Compiler-generated code exhibits little overhead
compared to hand-written code

 Still improving.

Conclusion

 Green-Marl

 A DSL designed for graph analysis

 Three benefits

 Productivity

 Performance

 Portability

 Project page: ppl.stanford.edu/main/green_marl.html

 GitHub repository: github.com/stanford-ppl/Green-marl

Thank you for attention

 Questions?

“Programs must be written for people to read, and
only incidentally for machines to execute.”

-- Abelson & Sussman

Language Features

 For graph analysis

 Built-in data types

 Node and edge property

 Collections

 Graph iteration and traversal

 For parallel and distributed execution

 Implicit parallelism

 Consistency Model

 Reduction

 For extensibility

 Embedded foreign syntax

Types and Properties

 Green-Marl is statically-typed languages

 Primitive types

 Graphs (directed, undirected),

 Node/Edge, Node/Edge properties

 Collections

 Foreign types (later)

 Procedure foo(G: Graph, // Graph

 s: Node(G) , // Node of G

 A,B: Node_Prop <Int >(G), // Node Property of G

 C: Edge_Prop <Float >(G))

{

 // Property definition inside a scope

 Node_Prop <Int >(G) T;

 é

}

Types and Properties

 Node/Edge

 Node(graph)

 Bound to a graph instance

 Node/Edge Property

 Node_Prop< prim_type > (graph)

 Collection Types

 Node_Set (graph)

 Node_Order (graph)

 Node_Seq (graph)

 Node_Multiset (graph)

Graph G1, G2;

Node(G1) n;

Node(G2) m;

n = m; // type error

Unique-
ness

Ordered
-ness

Set Y N

Order Y Y

Sequence N Y

Multiset N N

Graph Iteration and Traversal

 Graph Iteration

Foreach(n : G. Nodes) (n.A > 0)

 é

For  Sequential consistency

Foreach  Parallel consistency

Iterator and Range

 Graph. Nodes/Edges

 Node. Nbrs/InNbrs/OutNbrs

 (UpNbrs/DownNbrs) é

 Set.Items

 Filter; do not execute body if

false

 Graph Traversal

InBFS(n:G. Nodes From r)

 (n.A > 0) [n.color == 0]

{é}

Root

Filter

Navigator; do not

go further if false

InDFS Depth-First Search Order

InBFS  Breadth-First Search Order

InRDFS,InRBFS  Reverse order

traversal

Implicit Parallelism

 Parallel assignment

 Reduction expression

Graph G;

Node_Prop <Int >(G) x, y;

// parallel assignment

G.x = G.y + 1;

// Reduction (expression form)

Int z = Sum (t: G. Nodes) {t.x};

Foreach (n: G. Nodes)

 n.x = n.y + 1;

Int z = 0;

Foreach (t: G. Nodes)

 z += t.x; // Reduction (assignment form)

They are
Syntax sugars

Consistency Model

 Sequential Consistency (For)

 Parallel Consistency (Foreach)

 Things happen in parallel …

 No ordering is guaranteed btwn concurrent loops

 No visibility is guaranteed btwn concurrent loops

 Use reductions!

Foreach (s: G. Nodes) {

 Foreach (t: s. Nbrs) {

 // Error (Warning)

 // (w - w conflict) multiple s can write to the same t.A

 // (r - w conflict) t.A can be read and written by different s.

 t.A = t.A + s.B *2;

 }

}

s s
t t t

Foreach (s: G. Nodes) {

 Foreach (t: s. Nbrs) {

 // But compiler understands reduction

 t.A += s.B *2 ;

 }

}

Reductions

 Assignment Form

Int z = 0;

Foreach (n : G. Nodes)

 z += n.X;

 Expression Form

Int z = Sum(n:G. Nodes){n.X};

Int x,z;

Node(G) m;

Foreach (n : G. Nodes)

 z <x, m> max= f(n.A) + n.B <f(n.A), n > ;

 Argmax/Argmin

z: Max
x, m: Argmax

+= Sum{}

*= Product{}

&= All{}

|= Any{}

min= Min{}

max= Max{}

Bulk Synchronous Consistency

 Deferred assignment

Foreach (s: G. Nodes) {

 // Reading t.A gives óoldô value

 s.A <= Sum (t: s. Nbrs) {t.A} @ s;

}

// modification to property A becomes

// visible at the end of s - loop

Loop bound indicator: tells to
which loop this assignment is
bound.
(e.g. nested loop)

Note

 A note on parallel/sequential consistency and
parallel execution

 The compiler (runtime) may execute a foreach
loop sequentially.

 The compiler (runtime) may execute a for loop
in parallel, as long as it can guarantee
sequential consistency.

 E.g. transactional memory or locks

Data Access Analysis

Procedure foo (G:Graph, A,B: N_P<Int>(G); Z:INT)

{

 Int Y = 0 ;

 Foreach (x: G. Nodes)

 {

 If (x.B > 3)

 Y += x.A ;

 }

 Z = Y;

}

WSet: (Y, -, always),

DSet: (Y, -, always, (+=, x))
Rset: (A, x, always)

DSet: (Y, -, cond, (+=, x))
Rset: (B, x, always)
 (A, x, cond)

Wset: (Y, -, cond)
Rset: (B, Linear, always)
 (A, Linear, cond)

RSet: (Y, -, always),
WSet: (Z, -, always),

Wset: (Z, -, always)
Rset: (B, Linear, always)
 (A, Linear, cond)

I’m not a graph guy. Do you suggest
that I create my own DSL?

 Yes, I encourage you.

 Green-Marl is a stand-alone DSL, created from the scratch

 This paper is written with 3 of my managers.

 Current compiler was implemented in less than 6 months.

 It is a doable job : (1) Type checker is simple. (2) Code
generation is also not very complicated as you emit C++ code

 Designing a good language is challenging, though.

 There are easier ways, though.

 Innovations in Embedded DSL

 Delite [H. Chafi et al., PPoPP’11]  a framework for DSL
creation

 Green-Marl on Delite is also being developed.

Can every graph algorithm be
written in Green-Marl?

 Good question. We hope so, don’t have proof.

 We think we have all the necessary basic blocks

 Basic node/edge iteration; graph traversal

 Four collections (set/seq/order/bag)

 Reductions

 Foreign syntax / Foreign type may help you

 Still, we are improving our language specification

 We’re hearing from users, including professionals

 Your opinion is valuable to us

