
Green-Marl: A DSL for Easy and Efficient Graph Analysis

Sungpack Hong
Pervasive Parallelism Laboratory

Stanford University
hongsup@stanford.edu

Hassan Chafi
Pervaisve Parallelism Laboratory

Stanford University
and Oracle Labs

hassan.chafi@oracle.com

Eric Sedlar
Oracle Labs

eric.sedlar@oracle.com

Kunle Olukotun
Pervasive Parallelism Laboratory

Stanford University
kunle@stanford.edu

Abstract
The increasing importance of graph-data based applications is fu-
eling the need for highly efficient and parallel implementations of
graph analysis software. In this paper we describe Green-Marl, a
domain-specific language (DSL) whose high level language con-
structs allow developers to describe their graph analysis algorithms
intuitively, but expose the data-level parallelism inherent in the al-
gorithms. We also present our Green-Marl compiler which trans-
lates high-level algorithmic description written in Green-Marl into
an efficient C++ implementation by exploiting this exposed data-
level parallelism. Furthermore, our Green-Marl compiler applies a
set of optimizations that take advantage of the high-level seman-
tic knowledge encoded in the Green-Marl DSL. We demonstrate
that graph analysis algorithms can be written very intuitively with
Green-Marl through some examples, and our experimental results
show that the compiler-generated implementation out of such de-
scriptions performs as well as or better than highly-tuned hand-
coded implementations.

Categories and Subject Descriptors D.1.3 [Software]: Program-
ming Techniques—Concurrent Programming

General Terms Algorithms, Design, Performance

Keywords Graph, Domain-Specific Language, Parallel Program-
ming

1. Introduction
A graph is a fundamental data structure that captures relationships
between different data entities. Graphs are used to represent data
sets in a wide range of application domains, such as social science,
astronomy and computational biology. In a social graph, for exam-
ple, nodes correspond to people while friendship relationships be-
tween them are represented as edges. In addition, nodes or edges
in a graph are typically associated with a certain set of values.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’12 March 3–7,2012, London, England, UK.
Copyright c© 2012 ACM 978-1-4503-0759-8/12/03. . . $10.00

For example, the edges of a social graph might be associated with
the average number of phone calls per month between two peo-
ple. Graph analysis involves extracting information from a given
data-set which is represented as a graph. For example, one might
be interested in finding groups of people who call each other fre-
quently.

The enormous growth in data leads to large underlying graphs
which require huge amounts of computational power to analyze.
While modern commodity computer systems provide a significant
amount of computational power measured in the tera-flops, efficient
execution of graph analysis algorithms on large datasets remains
difficult on these systems [26]. Some of the challenges include:
• Capacity – for very large datasets, the graph will not fit into a

single physical memory address space.
• Performance – Some graph algorithms often perform poorly

when applied to large graph instances.
• Implementation – it is not easy to develop a correct and efficient

implementation for many graph algorithms.
In this paper, we tackle the performance and implementation

challenges, and focus on the case when the graph fits into physi-
cal memory. This is practical– as recent work [4] has demonstrated
that fairly large-sized graph problems can be processed in the phys-
ical memory of a modern high-end server machine. In Section 5,
however, we do discuss some future work to deal with the capacity
challenge.

Even in a single memory address space, graph applications often
suffer from poor performance on large problems. Poor performance
is due to the random memory access behavior of most graph anal-
ysis algorithms – as soon as the working-set size exceeds the size
of the various levels of caches in the system, performance becomes
dominated by memory latency.

One common approach to address the performance challenge is
to exploit the data parallelism which is typically abundant in analy-
sis algorithms on large graphs. This approach leverages both the in-
creasing number of parallel implementations proposed for common
graph-theory algorithms, and the recent advances and proliferation
of parallel computing systems By properly utilizing this hardware,
we hide this memory latency problem by using parallelism and are
only limited by the available memory bandwidth in the system.

However, adopting parallelism exacerbates the third challenge
– implementation. Even without parallelism, it is often challenging
to implement a graph analysis algorithm in an efficient way. The
application developer has to carefully consider which data structure

to use and has to reason about the algorithm’s memory access
patterns. Parallel programming introduces a whole set of other
issues to be carefully considered – race-conditions, dead-lock, etc.

Even the same algorithm may show drastically different perfor-
mance depending on its implementation. For instance, many dif-
ferent parallel implementations [4, 21, 38] have been proposed for
a simple breadth-first search algorithm, all with different perfor-
mance results. As we will show in Section 1.1, achieving an ef-
ficient implementation requires both a clear understanding of the
graph algorithm and a deep knowledge of the underlying hardware
architecture. This also introduces a tight coupling to the underlying
architecture which decreases the portability of the resulting imple-
mentation.

In this paper, we take a different approach on how to tackle
the performance and implementation challenges we have identified.
We propose Green-Marl1, a domain-specific language (DSL) de-
signed specifically for graph analysis algorithms. Users of Green-
Marl can describe their graph algorithm intuitively using high-level
graph constructs which expose the inherent parallelism in the algo-
rithm. A compiler for Green-Marl can exploit this high-level infor-
mation by applying a series of high-level optimizations and paral-
lelizing the algorithm, and finally producing a (correct) optimized
parallel implementation of the given algorithm. By using the DSL,
the users can concentrate on their algorithm rather than its imple-
mentation. The Green-Marl compiler final output is an implemen-
tation written in a general-purpose language, e.g. C++, rather than
a machine language, e.g. x86 instructions (Section 3).

Our specific contributions are as follows:

• Green-Marl, a DSL in which a user can describe a graph anal-
ysis algorithm in a very intuitive way. This DSL captures the
high-level semantics of the algorithm as well as its inherent par-
allelism.
• The Green-Marl compiler which applies a set of optimizations

and parallelization enabled by the high-level semantic informa-
tion of the DSL and produces an optimized parallel implemen-
tation targetted at commodity SMP machines.
• An interdiscipliary DSL approach to solving computational

problems that combines graph theory, compilers, parallel pro-
gramming and computer architecture.

The rest of this paper is organized as follows: we present
the overall language design of Green-Marl in Section 2. In Sec-
tion 3, we describe the Green-Marl compiler which produces high-
performing parallel implementations of algorithms described in
Green-Marl. Our experimental results (Section 4) show that while
graph analysis algorithms can be written using Green-Marl in a
simple way, their compiler-generated implementation performs
equally as well as or better than a highly-tuned hand-coded li-
brary implementations. In Section 5, we discuss how Green-Marl
can be used with minimal disruption in existing development en-
vironments, and how we plan to solve the capacity issue using
Green-Marl. Section 6 highlights related work and we conclude in
Section 7.

1.1 A Motivating Graph Example
Before discussing the details of the Green-Marl language and com-
piler, we present a well known social network analysis algorithm,
"betweenness centrality" (BC), written in Green-Marl. BC mea-
sures the centrality (or relative importance) of nodes in a given
graph. BC is widely used in social network analysis. Brandes [13]
first proposed a fast sequential algorithm to compute BC values for
all nodes in a graph.

1 Green-Marl is a transliteration of Korean words meaning ’pictured lan-
guage’.

1 Procedure Compute_BC(
2 G: Graph, BC: Node_Prop<Float>(G)) {
3 G.BC = 0; // initialize BC
4 Foreach(s: G.Nodes) {
5 // define temporary properties
6 Node_Prop<Float>(G) Sigma;
7 Node_Prop<Float>(G) Delta;
8 s.Sigma = 1; // Initialize Sigma for root
9 // Traverse graph in BFS-order from s

10 InBFS(v: G.Nodes From s)(v!=s) {
11 // sum over BFS-parents
12 v.Sigma = Sum(w: v.UpNbrs) {w.Sigma};
13 }
14 // Traverse graph in reverse BFS-order
15 InRBFS(v!=s) {
16 // sum over BFS-children
17 v.Delta = Sum (w:v.DownNbrs) {
18 v.Sigma / w.Sigma * (1+ w.Delta)
19 };
20 v.BC += v.Delta @s; //accumulate BC
21 } } }

Figure 1. Betweenness Centrality algorithm described in Green-
Marl

Although the original BC computation algorithm was writ-
ten for sequential execution, the algorithm contains an abundant
amount of inherent parallelism. Bader and Madurri [7] leveraged
this fact and presented an initial parallel implementation. A few
years later, the same researchers presented a significantly im-
proved implementation of the same algorithm [28]; the implemen-
tation adopted different meta-data structures, used a better iteration
scheme, and eliminated lock contention. This resulted in more than
2x speedup over their previous parallel implementation when mea-
sured on a Cray XMT machine.

Figure 1 shows the same algorithm written in Green-Marl. The
procedure takes two arguments G, a graph, and BC, a node property
(a piece of data associated with each node) of graph G, which is to
be computed (line 2). At line 3, the BC value is initialized to 0 for
all nodes in the graph G. Line 4 begins an iteration over every node
s in graph G. At each iteration step, two temporary node properties,
Sigma and Delta, are defined. After initializing Sigma for node s

(line 8), we do a breadth-first (BFS) order iteration over the nodes in
graph G, where s is the root of the search (line 10). During the BFS
iteration over every node v other than s, Sigma of v is computed
by summing up Sigma values of its BFS-parents (line 12). When
the BFS iteration concludes, at line 15 we then perform a reverse
order BFS traversal (i.e. we start iterating at the farthest nodes from
s). During this traversal we compute Delta from the BFS-children
nodes for each node v (line 17). Finally, Delta is accumulated into
BC during every iteration of s (line 20).

Note that the Green-Marl implementation is much shorter than
Brandes’ original description, which included implementation de-
tails related to performing the BFS iteration using queues and lists.
Bader and Madduri’s implementation [7], on the other hand, avail-
able in a library [9] is more than 400 lines long. Note that the li-
brary is implemented using OpenMP [31] which is a concise way
of writing parallel code.

Although written in an intuitive way, the Green-Marl implemen-
tation fully exposes the parallelism inherent in the algorithm. Ini-
tialization at Line 3 is a trivial data-parallel operation, while BFS
and RBFS (line 10 and line 15 can be parallelized at each level
of the iteration. Finally, even the outer loop 4 can be parallelized.
The compiler’s analysis phase (Section 3) ensures that there are no
data accesses that conflict (otherwise the compiler emits an error or
a warning). The Green-Marl compiler exploits the available paral-
lelism to generate an efficient implementation in a general-purpose
language (e.g. C++). In Section 4, we will show that this Green-
Marl implementation performs as well as the hand-optimized im-
plementation [28].

2. Green-Marl Language Design
2.1 Scope of the Language
Mathematically, a graph is an ordered pair G = (N,E) comprising
a set, N , of nodes and E, a set of edges or optionally ordered pairs
of two nodes. The data associated with each node or edge can be
defined as a mapping P from N (or E) to some codomain (e.g.
Pphone : E → R). In this paper, we refer to such a mapping as a
node (or edge) property.

Given a graph, G = (V,E), and a set of properties defined
on the graph, Π = {P1, P2, ...Pn}, our language is specifically
designed for the following types of graph analysis:

• Computing a scalar value from (G,Π), e.g. the conductance of
a sub-graph
• Computing a new property Pn+1 from (G,Π), e.g. the pager-

ank of each node of a graph
• Selecting a subgraph of interest out of the original graph

(V ′, E′) ⊂ (V,E), e.g. strongly connected components of
a graph

Note that the last type of analysis can be also be formulated as
computing two new properties Pnode : N → {true, false} and
Pedge : E → {true, false} which captures the membership of
the original nodes and edges in the resulting subgraph.

The above mathematical descriptions imply two important as-
sumptions that Green-Marl makes:

1. The graph is immutable and is not modified during analysis.
2. There are no aliases between graph instances nor between graph

properties.
We assume an immutable graph so that we can focus on the task

of graph analysis, rather than worry about orthogonal issues such
as how graphs are constructed or modified. Since Green-Marl is
designed to be used in re-writting only parts of the user application
(Section 3.1), one can construct or modify the graph in their own
preferred way (e.g. from data file, from a database, etc.) but when
a Green-Marl generated implementation is handed a graph, the
assumption is that the graph will not be modified while a Green-
Marl procedure is analyizing it.

2.2 Parallelism in Green-Marl
The Green-Marl language design is based on a few paradigms.
First, it includes language constructs for implicit parallelism, e.g.
group assignment (line 3 in figure 1) and in-place reductions
(line 12). Second, it allows users to explicitly demarcate parallel
execution regions. For example, the foreach statement used in
line 4 specifies a parallel region. The compiler analysis enabled
by the domain-specific knowledge encoded in Green-Marl appli-
cations can detect possible conflicts in parallel regions. Finally,
the domain-specific data analyses increase the likelihood that the
compiler can apply speculative or automatic parallelization. For ex-
ample, while the for statement, in contrast to a foreach statement,
specifies sequential execution of the iteration steps in no particu-
lar order, the compiler may parallelize the iteration as long as the
parallelization can guarantee a serializable execution of iteration
steps. 2

The language adopts a fork-join style of parallelism, where
iteration steps in a foreach are forked and execute in parallel and
then are synchronized at a join point which is inserted right after
the foreach. Note that this is the same widely used mechanism
adopted in successful parallel frameworks such as OpenMP [31],

2 Our current Green-Marl compiler (Section 3) does not attempt to paral-
lelize for iterations; however, future implementations may safely paral-
lelize them via conventional schemes such as fine-grained locking, graph
coloring, or transactional memory.

CUDA [30], and Pregel [29]. Green-Marl also allows the users to
express nested parallelism. The following example3 shows nested
parallel regions: line 23 is a parallel iteration over all the nodes in
the graph G, while line 26 is a nested parallel iteration over all the
neighbors of node s. Forked iteration steps are joined at the end of
a parallel iteration. All the forked iteration steps of line 26 from a
single s have to synchronize before execution proceeds to line 27.
However, forked iteration steps do not need to synchronize with
other nested parallel execution regions (i.e., those iteration steps
which are forked from a different s).

22 Int sum=0;
23 Foreach(s: G.Nodes) {
24 Int p_sum = u.A;
25 Foreach(t: s.Nbrs)
26 p_sum *= t.B;
27 sum += p_sum;
28 }
29 Int y = sum / 2;

Green-Marl uses static scoping rules. Local variables are private
to the current iteration step, but are shared by any parallel region in
the same scope as the variables. In our previous example, p_sum
is private to each parallel iteration step of the iteration at line 23
(s-iteration) but shared by every parallel iteration step at line 26
(t-iteration) originated from the same s.

Finally, Green-Marl’s memory consistency model for parallel
execution is similar to that of OpenMP’s:
1. a write to a shared variable is not guaranteed to be visible to

other concurrent iteration steps during the parallel execution.
2. a write to a shared variable is guaranteed to be visible to the later

statements of the current iteration step, unless another write
to the same variable from a concurrent iteration step becomes
visible beforehand.

3. a write to a shared variable becomes visible at the end of a
parallel iteration; if there have been multiple concurrent iter-
ation steps that wrote to the same, only one write (chosen non-
deterministically).

On the other hand, Green-Marl ensures each write is atomic (i.e. no
data is partially written) and operations on a collection (i.e. adding
an item to a set) are also atomic.

Thus, the following Green-Marl example suffers from data-
races under the above consistency model. Line 32 is a write-write
conflict because multiple s-iteration steps can write to the same t-
node. Similarly the read at line 33 and the write at line 32 is a read-
write conflict. We encourage the readers to visualize these cases
using Figure 2.(a). A Green-Marl compiler would detect such data-
races at compile time (Section 3.2).

30 Foreach(s:G.Nodes)
31 Foreach(t:s.OutNbrs)
32 t.A = // write-write conflict
33 t.A + s.B; // read-write conflict

Fundamentally, Green-Marl prevents users from writing algorithms
that communicate between concurrent iteration steps. Instead, it ex-
pects users to use proper reductions (Section 2.3.4) to get determin-
istic results. This design decision was made to allow the language
to work in distributed environments as well (Section 5.2).

2.3 Language Constructs
2.3.1 Data-Types and Collections
Green-Marl has a simple type system. First, there are five primi-
tive types (Bool, Int, Long, Float and Double). Green-Marl also

3 In our examples, our convention is to use ’G’ for graphs, ’x,y,z’ for scalar
variables, ’A,B,C’ for propertes, ’s,t,u’ for loop variables, ’F(),G()’ for
Boolean functions, and ’X(),Y()’ for numeric functions.

s1

t1 t2 t3

s2

r

s1 s2

t1 t2 t3

��

�� ��

(a) (b)

Figure 2. Simple graph instances. (a) is a small bipartite graph,
while (b) is showing only a portion of the graph in the middle of
BFS traversal rooted from r.

sequential parallel
Group Op-Name S O Q S O Q
Grow Add v v

Push(Front/Back) v v v v
Shrink Remove v v

Pop(Front/Back) v v ? ?
Clear v v v v v v

Lookup Has v v v v v v
Front(Back) v v v v

Size v v v v v v
Copy = v v v X X X
Iteration Items v v v v v v
Modification under iteration→ Shrink, Grow, or Copy: X
Conflicts under parallel execution→

Grow-Shrink: X Lookup-Shrink: ? Lookup-Grow: ?

Table 1. Operations on Collections: S,O,and Q denotes set, order
and sequence, respectively. In the table, ’v’, ’X’, ’?’ stands for
the operation being valid, invalid, and undefined for the selected
collection type under the selected execution context.

defines two graph types (DGraph and UGRaph) which denote a di-
rected graph and an undirected graph respectively4. Second, there
is a node type and an edge type both of which are always bound
to a graph instance, as in the n1 and n2 in following code exam-
ple. Third, there are node properties and edge properties which are
bound to a graph but have base-types as well (A in the following
code example).

Finally, Green-Marl provides three types of collection types (for
both node and edge types): Set, Order, and Sequence. Elements in
a Set are unique while a Set is unordered. Elements in an Order
are unique while an Order is ordered. Elements in a Sequence are
not unique while a Sequence is ordered. All of these type are also
bound to a graph: e.g., S in the following code example.

34 Procedure foo(G1, G2:Graph, n:Node(G1)) {
35 Node(G2) n2; // a node of graph G2
36 n2 = n; // type-error (bound to different graphs)
37 Node_Prop<Int>(G1) A; //integer node property for G1
38 n.A = 0;
39 Node_Set(G1) S; // a node set of G1
40 S.Add(n);
41 }

Table 1 summarizes the operations defined on collection types
in a sequential and parallel execution context. Here are a few high-
lights: (a) The semantics of assignment to a collection is to create
a copy of the collection. During parallel execution, assignment to
a shared collection variable is not allowed. (b) Parallel Push to an
Order is allowed – the relative order of pushes in a parallel context
is non-deterministic and the pushed elements may not be visible to
other iteration steps. Support for parallel Pop is dependent on each

4 Graph is a type alias for DGraph. Both DGraph and UGraph can be
multi-graphs.

compiler implementation. (c) Every collection can be iterated on, in
sequential or in parallel. When iterating in parallel on a Sequence or
an Order, however, ordering information is lost. (d) It is prohibited
to modify the collection while iterating over it. (e) During parallel
execution, a collection should either grow or shrink, but cannot do
both.

2.3.2 Iterations and Traversals
Iteration in Green-Marl has the following form:

Foreach (iterator:source(-).range)(filter)
body_statement

The keyword Foreach implies parallel execution; it can be
replaced with For which implies sequential execution. iterator
defines an iterator symbol for this iteration, while source and
range determines over what is being iterated on and how. filter
is an optional boolean expression, which dictates whether to apply
body_statement on the current iteration step or not. The follow-
ing table summarizes the possible iteration range defined on each
source type.5

Source Type Range Access
D/UGraph Nodes Linear
Node(D/UGraph) Nbrs Random
Node(DGraph) OutNbrs Random
Node(DGraph) InNbrs Random
Node(D/UGraph) UpNbrs Random/-1
Node(D/UGraph) DownNbrs Random/+1
Node_Set Items Linear
Node_Order Items Linear
Node_Seq Items Random

One can iterate on all the nodes in a graph (Nodes), or all
the items in a collection (Items). From a node, one can iterate
on its neighborhood nodes in several different ways. InNbrs and
OutNbrs are defined for directed graphs using the edge directions
– neighbors that are connected by incoming/outgoing edges. For
undirected graphs InNbrs and OutNbrs become synonym to Nbrs.
UpNbrs and DownNbrs and are defined only during a BFS from a
specific node: UpNbrs of a node are InNbrs of the node whose
hop-distance from the root is smaller by one. See Figure 2.(b) to
visualize UpNbrs and DownNbrs.

The access column in the previous table indicates the nature of
the iteration. Linear iteration means that every iterator points to a
unique item, i.e. each item will be accessed once and only once via
the iterator. On the other hand, Random indicates the possibility
of aliasing; Random/+-1 will be discussed when we discuss BFS
traversal.

Sequential(i.e. For) iteration on an Order or a Set preserves
the order in which items were appended to the collection. Reverse
order iteration is also possible as shown in the following example:

42 Node_Order(G) O; ...
43 For(o: O-.Items) // reverse order iteration on O
44 ...

Green-Marl also provides two graph traversal schemes – Breadth-
First Search (BFS) order traversal and Depth-First Search (DFS)
order traversal. The syntax takes the following form:
InBFS (iter:srcˆ.Nodes From root) [navigator] (filter1)

forward_body_statement
InRBFS (filter2)

backward_body_statement

5 For the sake of brevity, the table only shows iteration types for node-wise
iteration. Similar iteration types are also defined for edge-wise iteration.

The above syntactic form is similar to that of normal iteration
with a few differences. First, root defines the root node of the
BFS traversal. Second, the optional ˆ character means that we first
create a transposed version of the graph and then traverse it along
the transposed edges. Third, navigator is another optional boolean
expression that dictates which nodes will be pruned for traversal.
For example, if a node does not satisfy the navigator condition, the
node is not further expanded during traversal. On the other hand, a
node that satisfies the navigator condition is still expanded, even if
it does not satisfy the filter condition.

The following code example specifies a BFS traversal on the
transposed graph of G, traversing only through nodes whose flag
have not been set.

45 Node_Prop<Bool>(G) flag;
46 InBFS(s: G^.Nodes From r)[!s.flag]
47 {...}

Also, note that the BFS syntax has two body statement blocks.
The first body statement block is executed while in forward BFS
expansion (i.e. traversing nodes from closest to farthest from the
root). If the optional second sentence block is specified, the reverse
order BFS traversal (i.e. from the farthest to the closest nodes to the
root) is also performed.

DFS has the same syntactic form as BFS except that InDFS

and InPost are used in place of InBFS and InRBFS; the first body
statement block specifies the statements to be executed while in
pre-order execution while the second is for post-order execution.

DFS and BFS have different parallel execution semantic. DFS
implies sequential execution, while BFS implies level-synchronous
parallel execution. That is to say, during BFS, all the nodes that
have the same distance from the root node are visited concurrently
but parallel execution contexts are synchronized before moving
on to the next level. Therefore there are no data conflicts in the
following code example, as nodes accessed via s are disjoint with
repect to the nodes accessed via t.

48 InBFS(s: G.Nodes From r) {
49 Foreach(t: s.UpNbrs) // t: Random/-1 access
50 s.A += t.A; // s.A does not conflict with t.A
51 }

2.3.3 Deferred Assignment
Green-Marl also supports bulk synchronous consistency [34] via
deferred assignments. Deferred assignments are denoted by <= and
followed by a binding symbol as in the following example. When
a symbol is written using a deferred assignment, a read from the
symbol always gives an ’old’ value and a write to the symbol
becomes effective at the end of the binding iteration.

52 Foreach(s:G.Nodes) {
53 // no conflict. t.X gives ’old’ value
54 s.X <= Sum(t:s.Nbrs) {t.X} @ s
55 }
56 // All the writes to X becomes visible simultaneously
57 // at the end of the s iteration.

2.3.4 Reductions
Green-Marl heavily relies on reductions to achieve deterministic
results despite its non-sequential memory consistency model (Sec-
tion 2.2). There are two (slightly) different kinds of reductions: one
assumes an expression form (or in-place from), the other an assign-
ment form. In the following example, Sum is in-place reduction and
+= is reduction assignment. Note that initialization is required for
the reduction assignment; in the case of G being an empty graph, x
becomes zero, but y would have become a non-deterministic value
without proper initialization.

58 Int x,y;
59 x = Sum(t:G.Nodes){t.A}; // equivalent to next 3 lines.
60 y = 0;
61 Foreach(t:G.Nodes)
62 y+= t.A;

The following lists all the reduction operators in Green-Marl;
we list both in-place form and assignment form6. Note that in-place
reductions can have filters just like the foreach statement.

In-place Assignment In-place Assignment
All &&= Sum +=

Any ||= Product *=

Min min= Count ++

Max max=

Min and Max are especially interesting forms of reduction be-
cause they can be accompanied with argmax and argmin assign-
ment. In the following example, line 67 stores not only the min-
imum value of the expression t.A + u.b but also the arguments
minimizing the expression. Note that all three LHS symbols will
be written atomically.

63 Int X=INF;
64 Node(G) from, to;
65 Foreach(t:G.Nodes)
66 Foreach(u:t.Nbrs)
67 X <from, to> min= (t.A + u.B) <t, u>;

Similarly to deferred assignments, reduction assignments can be
accompanied with a bound symbol, denoted as an iteration variable
followed by @ character, which indicates the iteration scope where
the reduction happens. This syntax is designed to clarify the user’s
intention in the presence of nested iterations. For example, x+=..@s
means that variable x is reduced by addition during the s-iteration
and therefore x should not be read or written otherwise inside the s-
iteration. The concept is not far from OpenMP’s reduction pragma.

However, specifying a bound symbol is optional for reduction
assignments, as in the following example; if omitted, a Green-Marl
compiler should try finding appropriate bound for the user, or give
an error if it can’t.

68 Int sum = 0;
69 Foreach(s:G.Nodes) {
70 Foreach(t:s.Nbrs)
71 sum += t.A @s; // accumulate over s-iteration
72 if (s.A > THRESHOLD)
73 sum += s.B ; // @s is implied
74 s.C = sum; // this is an read-reduce conflict.
75 } // (sum is still being reduced)

Although this section introduced key features of the Green-
Marl language, we are in the process of adding formalism in our
language specification. The current draft of Green-Marl language
specification is publicly available on our website. [1].

3. Compiler
3.1 Compiler Overview
Figure 3 shows how Green-Marl fits in the overall application de-
velopment process. We envision that the user application is com-
posed of graph analysis components and also other components like
data acquisition and UI. We expect that the application developer
would extract the graph analysis components and use Green-Marl
to express them. The Green-Marl compiler is used to generate an
equivalent implementation of the graph analysis component in a
lower level general purpose language such as C++. The generated
code assumes certain data structures for graph representation. The
definition and implementation of these required data structures is

6 We’re investigating adding custom reduction operators in the next version
of the language.

Parsing &

Checking

Front-end

Transform

Back-end

Transform

Code Gen

Graph

Analysis

Green-Marl

Code

Graph Data

Structure (LIB)

Target

Code

Green-Marl

Compiler

User

Application

Figure 3. Overview of Green-Marl DSL-compiler Usage

supplied as a library to be linked into the final executable. There-
fore each Green-Marl compiler should specify a one-to-one map-
ping between Green-Marl types and target language types.

The figure also shows the four phases of Green-Marl compi-
lation. In the first phase, the compiler conducts syntactic checks,
runs a type-checker, and ensures that the application developer is
not violating the semantics of Green-Marl’s parallel constructs. If
all checks pass successfully, the compiler applies a set of trans-
formations that are target independent. These are followed by tar-
get dependent transformations and optimizations. The fourth phase
handles the task of code generation. In this paper, we discuss our
first implementation of a Green-Marl compiler which targets coher-
ent shared-memory multi-processor systems and emits C++ code.
Note that, however, the first two phases can be re-used for our fu-
ture compiler implementations that will target completely different
systems (Section 5.2). Each of the four different phases will be dis-
cussed in more detail in the following sections:

3.2 Parsing and Checking
The first phase of compilation involves checking the validity of the
user input. The compiler checks for three things: (1) syntax, (2)
types, and (3) valid parallel semantics.

Syntax checking and type checking in Green-Marl is no dif-
ferent than what is found in traditional general-purpose compilers.
Green-Marl is a statically typed language; the type of each expres-
sion is determined at compile time. The type checking phase of a
Green-Marl compiler is much simpler than that of a general pur-
pose language,since Green-marl is composed of a handful of prim-
itive and built-in types.7

While Green-Marl’s type system is quite rudimentary, the high-
level semantics it encodes enable powerful program analysis, which
can be used to check for incorrect use of parallel constructs. Let us
consider the following example Green-Marl code snippet:

76 Int y=0;
77 Foreach(s:G.Nodes)(s.C>3){
78 Foreach(t:s.Nbrs){
79 Int x = y * s.B;
80 s.A += t.B * X @ t;
81 }
82 s.B = 4;
83 }

Table 2 shows how the above code can be analyzed. The table
should be read from top to bottom, where each row represents a
step in the semantics analysis phase. The analysis happens through
post-order iteration of the abstract syntax tree; thus, we first analyze
the body of a foreach iteration before finishing the analysis of the
foreach itself. First, the analyzer identifies at line 76 that scalar
symbol y is being written. Then the analysis continues two levels
deeper and reaches line 79, where it detects a read of y, a read of

7 User defined types are supported via foreign syntax (Section 5.1).

target driver/ reduce binding
Line type symbol access. cond? op symbol
76 W y - N - -
79 R y - N - -

R B s N - -
W x - N - -

80 R x - N - -
R B t N - -
D A s N + t

78 R y - N - -
(during R B s N - -
inspect- R B t N - -
ion) D A s N + t
78 R y Rand N - -
(after R B s N - -
abst- R B Rand N - -
raction) W A s N - -
82 W B s N - -
77 R y Rand Y - -
(after R B Linear Y - -
abst- R B Rand Y - -
raction) R C Linear N - -

W A Linear Y - -
W B Linear Y - -

Table 2. Read-Write Analysis Example

B driven by s, and a write to x. Similar analysis happens at line 80,
where x is being read, B is being read driven-by t, but this time
symbol A is being reduced with a plus, driven-by s, and bound to t.

When all the statements of the foreach(t) have been analyzed,
the parallel semantics of this loop are analyzed. First, all the read,
write, and reduce sets of body block are merged while references
to the local scope variables (e.g. x) are eliminated. The compiler
checks (1) if the reduced symbol (i.e. A) is not being written, read,
or reduced by other operations. Then, (2) it compares every symbol
in the merged read-set against the write-set, and a check is made
for conflicting writes. In this example, there are no errors.

If the data conflict checks do not generate errors, the result of
current iteration analysis is computed in the following way: (a)
reduction bound to the current iterator is changed into a write and
(b) access through the current iterator is abstracted according to the
iterator’s type. In the example in table 2, the reduction to symbol A
is changed to a write, and the read of B driven by t is now labeled
as a Random read of B, as t is a neighborhood iterator.

Now, the analysis goes up one level and reaches line 82, where
it sees the write to B, driven by s. Then, parallel semantic checking
can be performed for the iteration at line 77. This time the analysis
will find a conflict between the write to B driven by s (line 82 and
the Random read of B (line 80). The current default action for a
Read-Write conflict is to warn the users – In contrast, Read-Reduce,
Write-Reduce, or Reduce-Reduce conflicts cause compilation to
terminate in error. When no errors have been detected, the data-
access of the s-iteration can be computed, as in the last row of
table 2. Note how the filter at line 77 adds a conditional flag.

This analysis proceeds until all the statements in a procedure
are analyzed. The parallel semantic analysis is not only used to flag
errors, but its results are also used during the code transformation
phase as it will become clear in the following section.

3.3 Architecture Independent Optimizations
Once a Green-Marl application successfully emerges from the type-
checking and data-access analysis phases, the compiler can apply
to it a set of transformations that are target independent.

In this phase, the compiler first transforms all the syntactic sugar
into explicit iterations (Group Assignments and In-place Reduc-
tion). Then it applies optimizations that are effective regardless of
the target architecture. (Loop Fusion, Hoisting Definitions, Reduc-

tion Bound Relaxation). In addition, the compiler might use addi-
tional knowledge on the domain-specific properties of the data-set,
possibly controlled by command-line options (Flipping Edges).
Group Assignment: Group assignment can be trivially expanded into
a parallel or sequential iteration, depending on the type of source
collection.

84 Node_Set S(G);
85 Node_Seq Q(G); //may not be unique
86 S.A = S.A + S.size();
87 Q.A = Q.A + Q.size();

becomes

88 Foreach(s:S.Items) // parallel iteration
89 s.A = s.A + S.Size();
90 For(q:Q.Items) // sequential iteration
91 q.A = q.A + Q.size();

In-place Reduction: In-place Reductions are expanded into loop and
reduction assignments.

92 Int y = Sum(s:G.Nodes){
93 Product(t:s.Nbrs)(f(t)){X(t,s)}};

becomes

94 Int y;
95 Int _s0 = 0;
96 Foreach(s:G.Nodes) {
97 Int _p1 = 1;
98 Foreach(t: s.Nbrs)(f(t))
99 _p1 *= X(t,s) @ u;

100 _s0 += _p1 @ s;
101 }
102 y = _s0;

Loop Fusion: In the following example, two loops s and t are fused
into one even though the two loops have dependencies (through
property A and B), since the access pattern is Linear. Fusing loops
in general reduces loop overhead and increases locality. Note that
procedures that are written with implicit parallel constructs allow
for many opportunities to apply loop fusion.

103 Foreach(s: G.Nodes)(f(s))
104 s.A = X(s.B);
105 Foreach(t: G.Nodes)(g(t))
106 t.B = Y(t.A)

becomes

107 Foreach(s: G.Nodes)(
108 if (f(s)) s.A = X(s.B);
109 if (g(s)) s.B = Y(s.A);
110 }

Hoisting Definitions: Temporary property definitions can be moved
out of sequential loops, which can save repeated large memory
allocations and de-allocations in some target systems.

111 For(s:G.Nodes) { //sequential loop
112 Node_Prop<Int>(G) A;
113 ...
114 }

becomes

115 Node_Prop<Int>(G) A;
116 For(s:G.Nodes) {
117 ...
118 }

Reduction Bound Relaxation: Reduction bounds can be relaxed to
the outmost parallel iteration that comes after the target symbol is
defined. If there is no such iteration, the reduction is transformed
back to a normal assignment. Note that in general reductions are
more expensive than normal reads and writes.

119 int x = 1;
120 Foreach(s:G.Nodes) { // par loop
121 int y = 0;
122 For(t: s.Nbrs) { // seq loop
123 x*= s.A @ s;
124 y+= s.B + t.C @ t;
125 } }

becomes
126 int x = 1;
127 Foreach(s:G.Nodes) { // par loop
128 int y = 0;
129 For(t: s.Nbrs) { // seqloop
130 x*= s.A @ s;
131 y= y + s.B + t.C; // normal assignment
132 } }

Flipping Edges: Reductions that are applied with reverse edges can
be replaced with ones that use forward edges as in the following ex-
ample. (See Figure 2.(a) to visualize this optimization.) Currently,
the compiler only applies this optimization when use of reverse-
edges is discouraged via a command-line options; use of reverse
edge is often disabled because reverse edges may not be available
from the original graph data but would need to be generated via an
extra computation step.

133 Foreach(t:G.Nodes)(f(t))
134 Foreach(s:t.InNbrs)(g(s))
135 t.A += s.B;

becomes
136 Foreach(s:G.Nodes)(g(s))
137 Foreach(t:s.OutNbrs)(f(t))
138 t.A += s.B;

3.4 Architecture Dependent Optimizations
In this phase, the compiler applies optimizations based on further
available information. It utilizes specific knowledge about the tar-
get system (Selection of Parallel Regions) as well as about the tar-
get language(deferred assignment and Saving BFS Children). It
also takes advantage of the performance characteristics of the un-
derlying data-structures that implement Green-Marl built-in types
(Set-Graph Loop Fusion).

In addition, architecture independent optimizations (e.g. Relax-
ing Reduction Bounds, and Hoisting Definitions) are re-applied
since new opportunities for those optimizations can be uncovered
as a result of other optimizations (e.g. Selection of Parallel Re-
gions).
Set-Graph Loop Fusion: Using the uniqueness property of a set, set
iteration can be fused with linear graph iteration. This optimzation
is only enabled when the back-end library ensures that the Has()
operation is fast (e.g. O(1)).

139 Node_Set S(G); // ...
140 Foreach(s: S.Items)
141 s.A = x(s.B);
142 Foreach(t: G.Nodes)(g(t))
143 t.B = y(t.A)

becomes
144 Foreach(s: G.Nodes)(
145 if (S.Has(s)) s.A = x(s.B);
146 if (g(s)) s.B = y(s.A);
147 }

Selection of Parallel Regions: The compiler determines which paral-
lel iterations are actually going to be parallelized. Currently, the
compiler flattens all the nested parallelism but selects only the
inner-most graph-wide foreach iteration or BFS traversal. This de-
cision is based on the assumption that the graph instance is large
enough to consume all the processor and memory bandwidth of the
given system.

148 Foreach(s:G.Nodes) {
149 InBFS(x:G.Nodes)
150 doX(x);
151 Foreach(y:s.Nbrs)
152 doY(y);
153 Foreach(z:G.Nodes)
154 doZ(z);
155 }

becomes

156 For(s:G.Nodes) { // Seq
157 InBFS(x:G.Nodes) // Par
158 doX(x);
159 For(y:s.Nbrs) // Seq
160 doY(y);
161 Foreach(z:G.Nodes) // Par
162 doZ(z);
163 }

Deferred Assignment: Deferred assignments are transformed into
the definition of temporary properties, initializing them and copy-
ing back the final result.

164 Foreach(s:G.Nodes)(f(s))
165 s.A = Sum(t:s.Nbrs){t.A}

becomes

166 Node_Prop<...>(G) A_new; // define temp
167 G.A_new = G.A; // init temp
168 Foreach(s:G.Nodes)(f(s))
169 s.A_new = Sum(t:s.Nbrs){t.A} // write to temp
170 G.A = G.A_new; // copy back temp

However, initialization can be removed if the property is linearly
and unconditionally updated inside the binding iteration.

171 Foreach(s:G.Nodes)
172 s.A = Sum(t:s.Nbrs){t.A}

becomes

173 Node_Prop<...>(G) A_new; // define temp
174 Foreach(s:G.Nodes) // linear & unconditonal
175 s.A_new = Sum(t:s.Nbrs){t.A} // write to temp
176 G.A = G.A_new; // copy back temp

Furthermore, if the binding iteration is inside a sequential loop,
the copy back operation can be replaced with pointer swaps, while
a final copy back operation is required at the iteration exit. Note
that the compiler can generate aliases, whereas users cannot.

177 While (...) {
178 // ...
179 Foreach(s:G.Nodes)(f(s))
180 s.A = Sum(t:s.Nbrs){t.A}
181 // ...
182 }

becomes

183 Node_Prop<..>(G) A_new;
184 // following syntax is for explanation only
185 Prop* ptr_saved = _alias_ptr(A);
186 While(...) {
187 // ...
188 Foreach(s:G.Nodes) {
189 s.A_new = Sum(t:s.Nbrs){t.A}
190 }
191 _swap_ptr(A, A_new);
192 // ...
193 }
194 If (ptr_saved != A) {
195 _swap_ptr(A, A_new);
196 A = A_new; // copy back before return
197 }

Saving BFS Children: Our compiler also applies a technique used in
Madduri et al.’s work [28]. This optimization checks if the down
neighbors are used during the reverse order traversal, in which case

the compiler prepares an O(E) array named edge-marker. During
forward BFS iteration, if a neighbor is identified in the next level,
the edge leading to it is marked. During reverse iteration, next-
level neighbors can be identified quickly by looking at the edge
information rather than the nodes.

198 InBFS(v:G.Nodes; s) { ... //forward }
199 InRBFS { // reverse-order traverse
200 Foreach(t: v.DownNbrs) { //using DownNbrs
201 DO_THING(t);
202 } }

becomes

203 // before BFS
204 _prepare_edge_marker(); // O(E) array
205 { // inside code template of
206 ... // forward BFS iteration
207 for (e = edges ...) {
208 index_t t = ...node(e);
209 ... // normal BFS expansion here
210 // [added: mark-down nbrs]
211 if (isNextLevel(t)) {
212 edge_marker[e] = 1;
213 } } } // end of forward BFS
214 { ... // reverse BFS
215 // iterate Down_Nbrs
216 for (e = edges ..) {
217 // check on edge instead of node
218 if (edge_marker[e] ==1) {
219 index_t t= ...node(e);
220 DO_THING(t);
221 } }}

3.5 Code Generation
In this phase, the compiler emits out target code using code-
generation templates that make use of back-end libraries. Currently,
we use OpenMP [31] as our threading library. Thus, during code
generation, most of the parallel iterations are trivially translated
into #pragma omp parallel for headers. We also assume gcc as
our target compiler.

The graph is represented using the same data format used in
a publicly available parallel graph library [9]. The format is essen-
tially equivalent to the CSR (Compressed Sparse Row) format used
in sparse matrix computation. A Set is implemented using both a
bitmap and a vector while an Order is implemented using a bitmap
and a list. Finally, node and edge properties are implemented as an
array of length O(N) and O(E) respectively.

Graph and Neighborhood Iteration: Thus a typical neighborhood
expansion iteration is translated into as following form:

222 Foreach(s:G.Nodes)
223 For(t: s.Nbrs)
224 s.A = s.A + t.B;

becomes

225 OMP(parallel for)
226 for(index_t s = 0; s < G.numNodes(); s++) {
227 // iterate over node’s edges
228 for(index_t t_=G.edge_idx[s]:t_<G.edge_idx[s+1];t_++){
229 // get node from the edge
230 index_t t = G.node_idx[t];
231 A[s] = A[s] + B[t];
232 } }

Efficient DFS and BFS traversals and Small BFS Instance Optimiza-
tion: code generation for DFS and BFS traversals is done using
efficient code-generation templates. For BFS traversal we use an
efficient parallel implementation [22] as our base template with the
additional optimization of delaying initialization of expensive run-
time structures (e.g. an O(N) array) until the BFS traversal grows
wide enough.

Note that there have been many publications on efficient par-
allel implementation of BFS traversal [4, 6, 22] and more are to
come. Green-Marl users, however, can benefit from any future BFS
implementation without modifying their program, as the compiler
can simply generate target source code using new code generation
templates.

Reduction on Properties: Reductions involving node properties are
translated using an atomic compare and swap.

233 Foreach(s:G.Nodes)
234 For(t: s.Nbrs)
235 t.A += s.B @s;

becomes

236 OMP(parallel for)
237 for(s = ...)
238 for(t_ = ...) {
239 t = ...
240 // The follwing 4 lines are implemented with C-MACRO
241 {int __old;
242 int __new;
243 do { __old = A[t];
244 __new = __old + B[s] ;
245 } while (CAS(&t[A]), __old, __new);
246 } }

Reduction on Scalars: Reductions on scalar values use privatization.
In other words, the value is first reduced into a thread-local vari-
able and a reduction is done at the end. Although this is similar to
OpenMP’s reduction clause, OpenMP for C does not support re-
duction by minimum or maximum.

247 int x = ...;
248 Foreach(s:G.Nodes)
249 x min= s.B @s;

becomes

250 int x = ...;
251 OMP(parallel)
252 { // create thread local
253 int _x_prv = INT_MAX;
254 OMP(for)
255 for(s = ...)
256 _x_prv = MIN(_x_prv, B[s]);
257 // C-macro equivalent to the above example.
258 REDUCE_MIN(int, x, _x_prv)
259 }

3.6 Discussion
Before we move on, let us discuss the benefit of using a compiler
to apply the optimizations that have been presented in the previ-
ous sections. Each of the optimization techniques is not completely
novel in itself; it is either an application of a classic compiler opti-
mization (e.g. Loop Fusion) or a technique that has been discussed
in previous work (e.g. Saving BFS Children).

However, using a compiler allows optimization without requir-
ing significant effort from a graph algorithms expert, and allows op-
timizations that are difficult with fixed function libraries (those that
don’t participate in compilation). For example, in applying Saving
BFS Children, the compiler takes a look at the statements that are
executed during reverse BFS traversal, and inserts extra lines of
codes in forward traversal only if DownNbrs are referred to during
reverse traversal. Finally, some optimizations are difficult to apply
in a low-level language compiler without domain knowledge. For
example, it is challenging for a C++ compiler to merge loops in the
following example, which is a possible C++ implementation of the
Green-Marl source code (line 103 – 106) in the Loop Fusion ex-
ample; C++ compiler cannot ascertain data dependencies between
line 264 and line 266 without information about the uniqueness of
the loop index.

260 Map<Node, int> A,B;
261 List<Node>& Nodes = G.getNodes();
262 List<Node>::iterator t,s;
263 for(s=Nodes.begin();s!=Nodes.end();s++)
264 if (f(*s)) A[*s] = X(B[*s]);
265 for(t=Nodes.begin();t!=Nodes.end();t++)
266 if (g(*t)) B[*t] = Y(A[*t]);

4. Experiments
In this section, we demonstrate the productivity benefits of using
Green-Marl, and the efficiency of the target-specific implementa-
tions it generates. Table 3 lists the popular graph algorithms we
used to evaluate Green-Marl. The first three of these algorithms
come from a parallel graph library called SNAP [9]. BC denotes
the betweenness centrality computation algorithm as explained in
section 1.1. Conductance [12] evaluates a single value from a graph
partition, by counting edges between nodes in a given partition and
nodes in other partitions; the algorithm is frequently used to de-
tect community structures in social graphs. Vertex Cover [17] is a
well known approximation to the NP-hard minimum vertex cover
problem. Note that each of the above three algorithms belongs to a
different type of graph analysis task defined in section 2.1.

In order to exercise more language constructs in Green-Marl,
we also used two famous algorithms that are not included in the
SNAP library. PageRank [32] is a famous algorithm which evalu-
ates the importance of each node in a graph based on (out-)degrees
of its in-coming neighbors. The algorithm can be described natu-
rally with the bulk-synchronous consistency model. Kosaraju’s al-
gorithm [17] is one way to find strongly connected components
in a directed graph. The algorithm performs two DFS traversals
on the graph; one traversal using the original edges and a second
one using the reverse edges. Therefore the algorithm is naively se-
quential. However, the second DFS traversal can be replaced with a
BFS traversal that can be parallelized. Green-Marl’s syntax makes
it easy to switch between DFS and BFS traversals.

We first consider the productivity gains in using Green-Marl.
Table 3 compares the number of lines of code of the above algo-
rithms when they are implemented in both in Green-Marl as well a
general-purpose language. For a fair comparison, we counted only
the relevant lines of code: we did not count lines of code responsi-
ble for data generation, time measurement, or ifdef statements. We
also treated every block of comments as a single line.

Overall, Green-Marl enables a much more concise implemen-
tation than what can be achieved in a general purpose language.
Note that SNAP already uses OpenMP [31], which significantly
reduces the lines of code needed to parallelize programs. However,
the Green-Marl implementation was much shorter. The extreme ex-
ample is the BC computation, which is more than 300 lines long
as implemented in the SNAP library whereas the Green-Marl im-
plementation is only 24 lines (Figure 1). The main reason for this
reduction in LOC is that the SNAP implementation cannot make
use of a BFS library call, because its execution was tightly coupled
with the BFS iteration code. On the other hand, Green-Marl allows
a concise implementation of the algorithm, while the compiler to
apply optimizations which ultimately yield better performance than
the SNAP version.

Of course, fewer lines of code does not necessarily mean higher
productivity. However, we believe that the Green-Marl implemen-
tations, in general, are more concise and intuitive than those written
in a general-purpose language. For example, the Green-Marl de-
scription of Conductance computation (Figure 9) reflects the math-
ematical definition of Conductance more closely than the SNAP li-
brary’s implementation. We show the Green-Marl implementations
of the algorithms in Figure 9 so the reader can judge for themselves.

LOC LOC
Name Original Green-Marl Source
BC 350 24 [9] (C OpenMp)
Conductance 42 10 [9] (C OpenMp)
Vetex Cover 71 25 [9] (C OpenMp)
PageRank 58 15 [2] (C++, sequential)
SCC(Kosaraju) 80 15 [3] (Java, sequential)

Table 3. Graph algorithms used in the experiments and their Lines-
of-Code(LOC) when implemented in Green-Marl and in a general
purpose language.

(a) RMAT (b) Uniform

Figure 4. Speed-up of Betweenness Centrality. Speed-up is over
the SNAP library [9] version running on a single-thread. NoFlipBE
and NoSaveCh means disabling the Flipping Edges (Section 3.3)
and Saving BFS Children (Section 3.5) optimizations respectively.

Next, we measure the performance of the target-specific compiler-
generated Green-Marl implementations. For these experiments, we
used two kinds of widely-accepted synthetic graph generators [9]:
Uniform and RMAT. Uniform generates a random graph based on a
simple model where two nodes are randomly selected and edges are
inserted between them. On the other hand, RMAT [15] generates
a scale-free graph which has a power-law skewed degree distri-
bution. Unless stated otherwise, we used graphs with 32 million
nodes and 256 million edges which were generated using default
parameters [9]. All the performance was measured on a commod-
ity server-class machine, which has two sockets with an Intel Xeon
X5550, each with 4 cores and 2 hardware threads per core. The
total last-level-cache size was 16MB.

Figure 4 compares the performance of the Betweenness Central-
ity computation implemented in Green-Marl to the hand-optimized
version included in the SNAP library. The Green-Marl implemen-
tation (denoted as GreenMarl in the plot) performs far better than
the current SNAP library implementation – the improvement is up
to 2.5 times when using 4 cores with the Uniform graph data set.
The performance gap is diminished with higher thread counts as
the memory bandwidth gets saturated.

Note that Madduri et al. proposed a more optimized implemen-
tation [28], with a reported speed-up of 2.3 over the current SNAP
version. However, this implementation was developed specifically
for the Cray XMT machine, and thus is not usable on commod-
ity systems. Also note that the Green-Marl compiler applies all
of the optimizations discussed in the paper automatically. Further-
more, these optimizations can be automatically applied to other al-
gorithms. This is one of the main benefits of using a DSL; we are
able to leverage the insights developed in optimizing a specific ap-
plication and apply them to a whole class of similar algorithms.

To show the impact of the optimizations, the figure also shows
the performance of the Green-Marl implementation when some
optimizations are disabled. The NoFlipBe and NoSaveCh curves
show the performance of this algorithm when the Flipping Edges
(Section 3.3) and the Saving BFS Children (Section 3.5) optimiza-
tions, respectively, are not applied. Figure 4 shows that most of the

(a) RMAT (b) Uniform

Figure 5. Speed-up of Conductance. Speed-up is over the SNAP
library [9] version running on a single-thread. NoLM and NoSRDC
means disabling the Loop Fusion (Section 3.3) and Reduction on
Scalars (Section 3.5) optimizations, respectively.

(a) RMAT (b) Uniform

Figure 6. Speed-up of Vertex Cover implemented in Green-Marl
and two versions of the corrected SNAP implementation SNAP
which had a data-race. The first version, SNAP(correct) utilizes a
simple locking approach. The second version, SNAP(optimized),
uses a more advanced test and test-and-set scheme. A small in-
stance (100k nodes, 800k edges) was used in this experiment.

parallel speed-up is attained from using an optimized parallel BFS
iteration (Section 3.5). The two optimizations mentioned above do
however have a measurable contribution to overall performance.

Figure 5 shows the performance of the conductance algorithm
implemented in Green-Marl compared to the implementation in-
cluded in the SNAP library. In this experiment, we randomly par-
titioned the nodes of each graph into four sets where each set con-
tains 10, 20, 30, and 40% of the nodes. We measured the time to
compute the conductance of all these partitions in turn. The figure
shows that the Green-Marl implementation performs as well as the
hand-tuned SNAP library. Furthermore, we can see that the Reduc-
tion on Scalars optimization is critical to achieving parallel perfor-
mance. Without the Loop Fusion optimization, we witness some
performance loss due to additional synchronization overhead.

Figure 6 shows the performance result of the vertex cover al-
gorithm. Note that the original implementation in the current ver-
sion of the SNAP library (ver 0.4) is not correct – a critical re-
gion was not properly protected. One simple way to fix this is-
sue is to protect the critical region with a simple omp critical

pragma. However such a fix completely serializes the execution
(SNAP(corrected) in the figure). While a more advanced scheme
(test and test-and-set) can improve the performance of this imple-
mentation (SNAP(optimized) in the figure), Green-Marl still out-
performs the more advanced version due by applying additional
optimizations such as Reduction on Scalars(Section 3.5).

Figure 7 shows the performance results of the PageRank algo-
rithm implemented in Green-Marl. The Green-Marl compiler suc-
cessfully parallelized the original sequential algorithm. In the fig-

(a) RMAT (b) Uniform

Figure 7. Speed-up of PageRank implemented in Green-Marl.
Speed-up is over a single-threaded implementation of the original
algorithm [2]. NoDeferOpt means disabling the Deferred Assign-
ment (Section 3.4) optimization. These results are based on running
the implementation for 10 iterations.

(a) RMAT (b) Uniform

Figure 8. Speed-up of Kosaraju implemented in Green-Marl. The
Speed-up is measured over a single-threaded C++ implementation
which performs two DFS iterations. NoSmallOpt means disabling
our Small BFS Instance Optimization. A small instance (1M nodes,
8M edges) was used in this experiment.

ure, the curve denoted as NoDeferOpt shows the resulting perfor-
mance when disabling the Deferred Assignment (Section 3.4) op-
timization. Although this optimization eliminates the initialization
and copy-back of the temporary array variable, its impact on overall
performance was not significant; the performance was governed by
the random memory accesses during the neighborhood expansion
phase of the algorithm.

Figure 8 shows the performance result of Kosaraju’s algorithm
implemented in Green-Marl. Note that while the original algorithm
involves two DFS (i.e. sequential) traversals on the graph, only the
second DFS traversal can be replaced with a BFS (i.e. parallel)
traversal. Therefore, as a result of Amdahl’s law, the theoretical
speed-up limit is 2. The NoBFSOpt curve shows the impact of
our small instance optimization which is an improvement over
a recently proposed BFS scheme [4] for small sub-graphs. Real-
world graphs which are mimicked by our synthetic graphs tend to
be composed of a small number of large (i.e. O(N)) components
and a large number of small (i.e. O(1)) components. Thus, our
optimization ensures that the overhead of the BFS traversal is
minimized when iterating on small sub-graphs.

5. Smoothing the Way to Green-Marl Adoption
So far, we have shown the benefits of using a DSL to achieve opti-
mum efficiency with high productivity. However requiring users to
adopt a new programming language introduces a new set of chal-
lenges. In this section, we show how most of these concerns can be
addressed.

5.1 Programmer Productivity

Green-Marl doesn’t require the application developer to re-write
their whole application. They can isolate graph-analysis routines
in their application and only rewrite these using Green-Marl. Our
compiler will then generate an efficient implementation of the al-
gorithms in the target source code (e.g. C++). The generated im-
plementation can then be compiled along with the rest of the ap-
plication with minimal changes to other modules. Any extra effort
required to convert between the data types in the original appli-
cation and those expected by Green-Marl would also be required
when using any other graph library.

Green-Marl also allows the embedding of foreign data types and
statements. In the example that follows, procedure foo accepts an
argument with a foreign type (my_type). During the type-checking
phase, the compiler simply treats all foreign types as equivalent
(line 269)8 Foreign statements are also easily embedded in Green-
Marl through a square bracket expression (line 270).

Foreign statements are conceptually similar to the inline assem-
bler (i.e. asm) in gcc. During the code generation phase, the com-
piler copies the text enclosed in square bracket as is, other than
properly handling variables with DSL types (denoted by the $ sign
inside the back-ticks). For example, ‘$a.F‘ would be translated to
F[a] (in our current C++ back-end compiler). At the end of a for-
eign statement, the application developer may supply a list of mu-
tated variables. This allows the Green-Marl compiler to correctly
identify read after write (RAW) hazards and prevents it from mov-
ing any statements that read the variable beyond the point at which
it will be modified. It is also up to the application developer to
correctly handle data races inside a foreign function if it is called
during parallel execution.

267 Procedure foo(G:Graph, my_var:$my_type) {
268 Int x = 0;
269 $my_type2 var2 = my_var; \\ compiles okay
270 [$my_var->mutate($x)]::[x]; } \\ text replacement

Since the Green-Marl compiler performs source-to-source trans-
lation, the application developer will still end up with code gener-
ated in a more widely-used target language such as C++. This
significantly reduces the risk associated with adopting a new lan-
guage. The generated source from the current Green-Marl compiler
is fairly human-readable: variable names and code layouts are pre-
served to a reasonable degree. We also plan to preserve comment
blocks in future versions of our compiler.

While one could always have manually typed in the exact same
source code that was emitted by the Green-Marl compiler, the
DSL approach provides additional benefits, as was shown in the
previous sections. First, more concise and intuitive descriptions
of graph algorithms, and secondly, a set of optimizations during
translation that span multiple function calls. These optimizations
across library entry points are nearly impossible to achieve using
a general purpose compiler that lacks any higher level semantic
knowledge of the application (Section 3 and 4).

Furthermore, users of Green-Marl may rely on the robust de-
bugging tools of the target language. In general, using Green-Marl
leads to an expression of the desired graph algorithms that makes
it easy to reason about the algorithm itself, leading to fewer errors.
We also plan on implementing an interpreter for Green-Marl ap-
plications that will feature step-wise code execution and a visual
graph representation.

5.2 Architecture Portability
Although not the main focus of this paper, a domain-specific ap-
proach such as that adopted by Green-Marl, in fact, can greatly

8 The behavior can be changed to treat each type distinctly, via command-
line options.

improve the portability of graph analysis applications. By replac-
ing the back-end module of the compiler without modifying the
DSL source code, the user can obtain equivalent implementations
tailored for systems substantially different from one another, for
example GPUs or clusters rather than symmetric shared-memory
machines. Each back-end would use different code-templates for
the language constructs and different optimizations in order to pro-
duce high-performance code for the target platforms. In contrast,
the low-level implementation required to achieve performance on
one system (e.g. C++ for SMP), rarely achieves similar perfor-
mance and often cannot be made to work on other systems (e.g.
GPU or cluster) without significant code restructuring, such adding
CUDA or MPI constructs. A Green-Marl compiler back-end for
GPU systems is being developed; this version adopts recent tech-
niques in GPU graph processing [21] which leverage the massive
amount of thread-level parallelism and large memory bandwidth
available on GPUs.

Green-Marl will ultimately be applicable to the analysis of very
large graph instances which cannot fit in a single physical mem-
ory space. Currently, the application developer is being encouraged
to use libraries such as Pregel [29], a distributed graph process-
ing framework, which consists of a MapReduce-like API that ab-
stracts the details of data communication in the distributed system.
However, the Pregel framework also forces the user to restructure
their traditional graph algorithms in terms of this API. This can
yield non-intuitive expressions of such graph algorithms. We re-
fer the readers to the original paper of Malewicz et al. [29] which
shows how the PageRank algorithm is implemented with Pregel
APIs. By contrast, in Figure 9 we show the same algorithm written
in Green-Marl. The Green-Marl implementation closely resembles
the natural way the algorithm was explained in the original PageR-
ank publication [32]. Hence, we are investigating the possibility
of adding another back-end that would translate Figure 9 into the
Pregel implementation. All of this is possible because considera-
tions for CUDA and distributed environments have influenced the
Green-Marl language design. Features like relaxed-memory consis-
tency, support for full bulk-synchronous memory consistency, rich
reduction operators and a limited selection of built-in data-types are
examples of such considerations.

6. Related Work
DSLs fall into two broad categories, namely external DSLs which
are completely independent languages, and internal DSLs, which
borrow functionality from a host language [23]. While Green-Marl
is currently implemented as an external DSL, we will consider in
the future the viability of implementing it as an internal DSL. In-
deed there has been a lot of research into how to leverage domain-
specific knowledge in the service of more optimized execution.
Expression Templates [35] can produce customized generation,
and are used by Blitz++ [36]. Active libraries [37], which are li-
braries that participate in compilation were introduced by Veld-
huizen. Kennedy coined the term telescoping languages [24] for
efficient DSLs created from annotated component libraries. Task-
Graph [11] is a meta-programming library that supports run-time
code generation in C++. Delite [14] is a more recent proposal that
aims at simplifying the creation of performance oriented DSLs such
as Green-Marl.

Noticeably, many features of Green-Marl are reminiscent of
those found in OpenMP [31], as both programming models let
the user explicitly specify parallel regions of execution. However,
Green-Marl provides further performance benefits by using domain
specific knowledges in applying optimizations. Previous work has
also shown some of these benefits. Guyver et al. present significant
performance improvements by annotating library methods with

domain-specific knowledge [20], and CodeBoost [10] uses user-
defined rules to transform programs using domain knowledge.

There are several publicly available libraries for graph analy-
sis. Popular single-threaded libraries include the Boost Graph Li-
brary(BGL) [33] and igraph [18]. There are only a few libraries
that support parallel or distributed execution: Parallel BGL [19] is
a distributed version of BGL while SNAP [8] is a stand-alone par-
allel graph analysis package. GraphLab [25] is a framework for
machine learning type graph algorithms. We are considering to use
GraphLab as one of our future back-ends. No matter how wide the
range of fixed functions supported by such libraries, the user still
may need to implement a different algorithm not supplied by the li-
brary. Green-Marl allows users to implement their own algorithms
and still get generated code that performs as well as hand-tuned
low-level implementations. Note that Green-Marl can still make
use of the efficient data structures supplied by a graph library such
as SNAP [8].

The efficient implementation of parallel graph algorithms is a
challenging task. The best implementation often is closely cou-
pled to an underlying hardware architecture. For example, a sim-
ple BFS traversal has been implemented differently on commodity
servers [4, 22], GPUs [21], Cray XMT machines [6] and cluster en-
vironments [38]. Techniques for efficient implementation of other
algorithms such as betweenness centrality [28], shortest path [27],
and minimum spanning tree [16] can be found in the research lit-
erature. Green-Marl does not obviate the need for these studies;
rather these techniques can easily be reused and applied to other
algorithms with similar patterns by means of the Green-Marl DSL
and compiler.

Large graph instances are drawing more and more attention
from the high performance computing community. Traditional
HPC technologies such as vectorization do not provide satisfactory
performance in processing large graph instances. Graph500 [5] is
an effort to create a benchmark that captures the computational
requirements of large graph applications. Pregel [29] is a Map-
Reduce like framework that aims to bring distributed processing
to graph algorithms. In Section 5.2, we discussed our plans for
targetting such a framework in future versions of Green-Marl.

7. Conclusions and Future Work
The Green-Marl DSL approach to graph analysis demonstrates that
developers can generate an implementation via an intuitive high-
level language that has competitive performance with hand-written
native code. Green-Marl allows users to get the benefit of opti-
mizations specifically for graph data structures, without writing
those optimizations directly, and without tying those optimizations
to architecture-specific characteristics. The language approach pro-
vides benefits over a library approach by optimizing across the call
boundaries of currently available graph libraries. Green-Marl can
be linked with native C++ programs, allowing graph algorithms
written in Green-Marl to be embedded in more complex, general-
purpose software. The next steps for Green-Marl are to generate
code for alternative architectures, such as clusters and GPUs, to
provide more support for the architecture-independent benefits of
this approach.

Acknowledgements
We thank Dr. Peter B. Kessler and Dr. Mario Wolczko (Oracle
Labs) for reviewing this paper and making helpful suggestions.
This work is supported by Army contract AHPCRC W911NF-
07-2-0027-1; DARPA contract, Oracle order US1032821; DOE
contract, Sandia order 1134180; SEEC: Specialized Extremely Ef-
ficient Computing, Contract HR0011-11-C-0007; Stanford PPL
affiliates program, Pervasive Parallelism Lab: Oracle, NVIDIA,
AMD, NEC, and Intel.

References
[1] Green-marl lanaguage specification. http://ppl.stanford.

edu/main/green_marl.html.

[2] Pagerank c++ implementation. http://code.grnet.gr/projects/pagerank.

[3] Strongly connected component (kosaraju) java implementation.
http://www.keithschwarz.com/interesting/.

[4] V. Agarwal, F. Petrini, D. Pasetto, and D. Bader. Scalable Graph
Exploration on Multicore Processors. In ACM/IEEE SC 2010.

[5] M. Anderson. Better benchmarking for supercomputers. Spectrum,
IEEE, 48(1), 2011.

[6] D. Bader and K. Madduri. Designing multithreaded algorithms for
breadth-first search and st-connectivity on the Cray MTA-2. In ICPP
2006. IEEE.

[7] D. Bader and K. Madduri. Parallel algorithms for evaluating centrality
indices in real-world networks. In IEEE ICPP 2006.

[8] D. Bader and K. Madduri. Snap, small-world network analysis and
partitioning: An open-source parallel graph framework for the explo-
ration of large-scale networks. In IEEE IPDPS, 2008.

[9] D. A. Bader and K. Madduri. Snap: small-world network analysis and
partitioning. http://snap-graph.sourceforge.net.

[10] O. Bagge, K. Kalleberg, M. Haveraaen, and E. Visser. Design of the
CodeBoost transformation system for domain-specific optimisation of
C++ programs. In Source Code Analysis and Manipulation, 2003.
Proceedings. Third IEEE International Workshop on.

[11] O. Beckmann, A. Houghton, M. Mellor, and P. H. Kelly. Runtime code
generation in c++ as a foundation for domain-specific optimisation. In
Domain-Specific Program Generation, volume 3016 of Lecture Notes
in Computer Science. Springer Berlin / Heidelberg, 2004.

[12] B. Bollobás. Modern graph theory. Springer Verlag, 1998.

[13] U. Brandes. A faster algorithm for betweenness centrality. The
Journal of Mathematical Sociology, 25(2):163–177, 2001.

[14] H. Chafi, A. Sujeeth, K. Brown, H. Lee, A. Atreya, and K. Olukotun.
A domain-specific approach to heterogeneous parallelism. In PPoPP.
ACM, 2011.

[15] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: A recursive model
for graph mining. In SDM, 2004.

[16] G. Cong and D. Bader. Lock-free parallel algorithms: An experimental
study. High Performance Computing-HiPC 2004, 2005.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. MIT press and McGraw-Hill, 2001.

[18] G. Csardi and T. Nepusz. The igraph software package for complex
network research. InterJournal Complex Systems, 1695, 2006.

[19] D. Gregor and A. Lumsdaine. The parallel bgl: A generic library for
distributed graph computations. Parallel Object-Oriented Scientific
Computing (POOSC), 2005.

[20] S. Z. Guyer and C. Lin. An annotation language for optimizing
software libraries. In PLAN ’99: Proceedings of the 2nd conference
on Domain-specific languages.

[21] S. Hong, S. Kim, T. Oguntebi, and K. Olukotun. Accelerating CUDA
graph algorithms at maximum warp. In PPoPP, 2011.

[22] S. Hong, T. Oguntebi, and K. Olukotun. Efficient parallel graph
exploration for multi-core cpu and gpu. In IEEE PACT 2011.

[23] P. Hudak. Building domain-specific embedded languages. ACM
Computing Surveys, 28, 1996.

[24] K. Kennedy, B. Broom, A. Chauhan, R. Fowler, J. Garvin, C. Koelbel,
C. McCosh, and J. Mellor-Crummey. Telescoping languages: A sys-
tem for automatic generation of domain languages. Proceedings of the
IEEE, 93(3), 2005.

[25] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. Heller-
stein. Graphlab: A new parallel framework for machine learning. In
Conference on Uncertainty in Artificial Intelligence, 2010.

[26] A. Lumsdaine, D. Gregor, B. Hendrickson, J. Berry, and J. Guest Ed-
itors. Challenges in parallel graph processing. Parallel Processing
Letters, 17(1):5–20, 2007.

[27] K. Madduri, D. Bader, J. Berry, and J. Crobak. Parallel shortest path
algorithms for solving large-scale instances. 9th DIMACS Implemen-
tation Challenge-Shortest Paths, 2006.

[28] K. Madduri, D. Ediger, K. Jiang, D. Bader, and D. Chavarria-Miranda.
A faster parallel algorithm and efficient multithreaded implementa-
tions for evaluating betweenness centrality on massive datasets. In
IEEE IPDPS 2009.

[29] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph
processing. In SIGMOD ’10. ACM.

[30] NVIDIA. CUDA. http://developer.nvidia.com/
object/cuda.html.

[31] OpenMP ARB. Openmp. http://www.openmp.org.
[32] L. Page. Method for node ranking in a linked database, Sept. 4 2001.

US Patent 6,285,999.
[33] J. Siek, L. Lee, A. Lumsdaine, L. Lee, L. Blackford, J. Demmel,

J. Dongarra, I. Duff, S. Hammarling, M. Heroux, et al. The boost
graph library: user guide and reference manual. 2002.

[34] L. G. Valiant. A bridging model for parallel computation. Commun.
ACM, 33, August 1990.

[35] T. L. Veldhuizen. Expression templates, C++ gems. SIGS Publica-
tions, Inc., New York, NY, 1996.

[36] T. L. Veldhuizen. Arrays in blitz++. In ISCOPE, pages 223–230,
1998.

[37] T. L. Veldhuizen. Active Libraries and Universal Languages. PhD
thesis, Indiana University Computer Science, May 2004.

[38] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendrickson, and
U. Catalyurek. A scalable distributed parallel breadth-first search
algorithm on BlueGene/L. In SC 2005 ACM/IEEE.

271 //--
272 // Computing Conductance
273 //--
274 Procedure conductance(G: Graph, member: N_P<Int>(G), num: Int) : Double {
275 Int Din, Dout, Cross;
276 Din = Sum(u:G.Nodes)(u.member==num){u.Degree()}; // Compute degree sum of inside nodes.
277 Dout = Sum(u:G.Nodes)(u.member!=num){u.Degree()}; // Compute degree sum of outside nodes.
278 Cross = Sum(u:G.Nodes)(u.member==num){ // Count number of crossing edges.
279 Count(j:u.Nbrs)(j.member!=num)}; // (Count is a syntactic sugar to Sum(..){1}
280 Double m = (Din < Dout) ? Din : Dout;
281 If (m ==0) Return (Cross == 0) ? 0.0 : +INF;
282 Else Return (Cross / m);
283 }
284
285 //--
286 // Obtaining vertex cover
287 //--
288 Procedure vertex_cover(G: Graph, VC:Edge_Prop<Bool>(G)): Int {
289 Node_Prop<Int>(G) Deg;
290 Node_Prop<Bool>(G) covered;
291 G.covered = False; // Initialization
292 G.Deg = G.InDegree() + G.OutDegree(); // Deg: the sum of in-degree and out-degree
293 G.VC = False;
294 Int remain = G.NumEdges()*2;
295
296 Do {
297 Int maxVal = 0;
298 Node(G) from, to;
299 Edge(G) e;
300 Foreach(s: G.Nodes)(!G.covered) { // Choose an edge that has maximum Deg
301 Foreach(t: s.OutNbrs) // value among remaining nodes
302 maxVal <from, to, e> max= (s.Deg + t.Deg) <s, t, t.GetEdge()> @s;
303 }
304 e.VC = True; // Select this edge.
305 from.covered = to.covered = True; // Node ’from’ and ’to’ are now covered.
306 from.Deg = to.Deg = 0;
307 remain = remain - maxVal;
308 } While (remain > 0) // Finish when there is no more edges
309
310 Int C = Count(t:G.Nodes)(t.covered); // Count number of covered nodes
311 Return C;
312 }
313
314 //--
315 // Computing PageRank
316 //--
317 Procedure PageRank(G: Graph, e,d: Double, max_iter: Int, PR: Node_Prop<Double>(G)) {
318 Double diff =0; // Initialization
319 Int cnt = 0;
320 Double N = G.NumNodes();
321 G.PR = 1 / N;
322
323 Do { // Main Iteration.
324 diff = 0.0;
325 Foreach (t: G.Nodes) { // Compute PR from neighbor’s current PR.
326 Double val = (1-d) / N +
327 d* Sum(w: t.InNbrs) (w.OutDegree()>0) {w.PR / w.OutDegree()};
328 t.PR <= val @ t; // Modification of PR will be visible after t-loop.
329 diff += | val - t.PR |; // Accumulate difference (t.PR is still old value)
330 }
331 cnt++; // ++ is a syntactic sugar.
332 } While ((diff > e) && (cnt < max_iter)); // Iterate for max num steps or difference is
333 } // smaller than given threshold.
334
335 //--
336 // Obtaining strongly connected components using Kosarajus algorithm
337 //--
338 Procedure SCC(G: Graph, CompID: Node_Prop<Int>(G)): Int {
339 G.CompID = -1; // Initialization
340
341 Node_Order(G) P; // Phase 1: get reverse post-DFS order.
342 For(t:G.Nodes)(!P.Has(t)) { // Starting from a non-visited node,
343 InDFS(s: G.Nodes From t)[!P.Has(s)] {} // Do DFS traversal and
344 InPost {P.PushFront(s);} // store nodes in reverse post DFS order.
345 }
346
347 Int numC = 0; // Phase 2: get strongly connected components.
348 For(s: P.Items)(s.compID==-1) { // Starting from a non-connected node,
349 InBFS(t: G^.Nodes From s) [t.CompID == -1] // Do BFS traversal and
350 { t.CompID = numC;} // add visited node into the current component.
351 numC++; // End current component.
352 }
353 Return numC;
354 }

Figure 9. Algorithms used in the paper

