
Composition and Reuse with Compiled
Domain-Specific Languages

Arvind K. Sujeeth1, Tiark Rompf2,3, Kevin J. Brown1, HyoukJoong Lee1,
Hassan Chafi1,3, Victoria Popic1, Michael Wu1, Aleksandar Prokopec2,

Vojin Jovanovic2, Martin Odersky2, and Kunle Olukotun1

1 Stanford University
{asujeeth, kjbrown, hyouklee, hchafi, viq, mikemwu, kunle}@stanford.edu

2 École Polytechnique Fédérale de Lausanne (EPFL) {firstname.lastname}@epfl.ch
3 Oracle Labs {firstname.lastname}@oracle.com

Abstract. Programmers who need high performance currently rely on
low-level, architecture-specific programming models (e.g. OpenMP for
CMPs, CUDA for GPUs, MPI for clusters). Performance optimization
with these frameworks usually requires expertise in the specific pro-
gramming model and a deep understanding of the target architecture.
Domain-specific languages (DSLs) are a promising alternative, allow-
ing compilers to map problem-specific abstractions directly to low-level
architecture-specific programming models. However, developing DSLs is
difficult, and using multiple DSLs together in a single application is even
harder because existing compiled solutions do not compose together. In
this paper, we present four new performance-oriented DSLs developed
with Delite, an extensible DSL compilation framework. We demonstrate
new techniques to compose compiled DSLs embedded in a common back-
end together in a single program and show that generic optimizations can
be applied across the different DSL sections. Our new DSLs are imple-
mented with a small number of reusable components (less than 9 parallel
operators total) and still achieve performance up to 125x better than li-
brary implementations and at worst within 30% of optimized stand-alone
DSLs. The DSLs retain good performance when composed together, and
applying cross-DSL optimizations results in up to an additional 1.82x
improvement.

1 Introduction

High-level general purpose languages focus on primitives for abstraction and
composition that allow programmers to build large systems from relatively sim-
ple but versatile parts. However, these primitives do not usually expose the
structure required for high performance on today’s hardware, which is parallel
and heterogeneous. Instead, programmers are forced to optimize performance-
critical sections of their code using low-level, architecture-specific programming
models (e.g. OpenMP, CUDA, MPI) in a time-consuming process. The optimized
low-level code is harder to read and maintain, more likely to contain hard-to-
diagnose bugs, and difficult to port to other platforms or hardware.

Domain-specific languages (DSLs) have been proposed as a solution that can
provide productivity, performance, and portability for high-level programs in

Lexer	 Parser	 Type	
checker	

Embedded	 front-‐end	

External	 front-‐end	

Full	 embedding	 (composable)	 Front-‐end	 embedding	 (not	 composable)	

Spectrum	 of	 compiled	 domain-‐specific	 languages	

Stand-‐alone	 (not	 composable)	 Back-‐end	 embedding	 (composable)	

Analysis	 OpCmizaCon	 Code	
gen	

Embedded	 back-‐end	

External	 back-‐end	

Fig. 1: Major phases in a typical compiler pipeline and possible organizations of com-
piled DSLs. Front-end embedding in a host language (and compiler) is common, but
for composability, back-end embedding in a host compiler (i.e. building on top of an
extensible compiler framework) is more important.

a specific domain [1]. DSL compilers reason about a program at the level of
domain operations and so have much more semantic knowledge than a general
purpose compiler. This semantic knowledge enables coarse-grain optimizations
and the translation of domain operations to efficient back-end implementations.
However, the limited scope of DSLs is simultaneously a stumbling block for
widespread adoption. Many applications contain a mix of problems in different
domains and developers need to be able to compose solutions together without
sacrificing performance. In addition, DSLs need to interoperate with the outside
world in order to enable developers to fall-back to general purpose languages for
non performance-critical tasks.

Existing implementation choices for DSLs range from the internal (i.e. purely
embedded) to external (i.e. stand-alone). Purely embedded DSLs are imple-
mented as libraries in a flexible host language and emulate domain-specific syn-
tax. The main benefit of internal DSLs is that they are easy to build and com-
pose, since they can interoperate freely within the host language. However, they
do not achieve high performance since the library implementation is essentially
an interpreted DSL with high overhead and since general purpose host languages
do not target heterogeneous hardware. On the other end of the spectrum, stand-
alone DSLs are implemented with an entirely new compiler that performs both
front-end tasks such as parsing and type checking as well as back-end tasks like
optimization and code generation. Recent work has demonstrated that stand-
alone DSLs can target multiple accelerators from a single source code and still
achieve performance comparable to hand-optimized versions [2, 3]. The trade-off
is that each DSL requires a huge amount of effort that is not easy to reuse in
other domains, DSL authors must continuously invest new effort to target new
hardware, and DSL programs do not easily interoperate with non-DSL code.

Another class of DSLs, compiled embedded, occupies a middle-ground be-
tween the internal and external approaches [4–7]. These DSLs embed their front-
end in a host language like internal DSLs, but use compile- or run-time code
generation to optimize the embedded code. Recently, these techniques have also
been used to generate not only optimized host language code, but heteroge-
neous code, e.g. targeted at GPGPUs. The advantage of this approach is that
the languages are easier to build than external versions and can provide better
performance than internal versions. However, these DSLs still give up the com-
posability of purely embedded DSLs and the syntactic freedom of stand-alone
DSLs.

2

Like previous compiled embedded DSLs, our goal is to construct DSLs that
resemble self-optimizing libraries with domain-specific front-ends. However, we
propose that to build high-performance composable DSLs, back-end embedding is
more important than the front-end embedding of traditional compiled embedded
DSLs. Figure 1 illustrates this distinction. We define back-end embedding as a
compiled DSL that inherits, or extends, the latter portion of the compiler pipeline
from an existing compiler. Such a DSL can either programmatically extend the
back-end compiler or pass programs in its intermediate representation (IR) to
the back-end compiler. By embedding multiple DSLs in a common back-end,
they can be compiled together and co-optimized. The fact that many compiled
DSLs target C or LLVM instead of machine code and thus reuse instruction
scheduling and register allocation can be seen as a crude example of back-end
embedding. However, the abstraction level of C is already too low to compose
DSLs in a way that allows high-level cross-DSL optimizations, parallelization,
or heterogeneous code generation. Just as some general purpose languages are
better suited for front-end embedding than others, not all compiler frameworks
or target languages are equally suited for back-end embedding.

In this paper, we show that we can compose compiled DSLs embedded in a
common, high-level backend and use them together in a single application. Our
approach allows DSLs to build on top of one another and reuse important generic
optimizations, rather than reinventing the wheel each time. Optimizations can
even be applied across different DSL blocks within an application. The addition
of composablity and re-use across compiled DSLs pushes them closer to libraries
in terms of development effort and usage while still retaining the performance
characteristics of stand-alone DSLs. In other words, we regain many of the bene-
fits of purely embedded DSLs that were lost when adding compilation. We build
on our previous work, Lightweight Modular Staging (LMS) and Delite [8–10],
frameworks designed to make constructing individual compiled embedded DSLs
easier. Previous work demonstrated good performance for OptiML, a DSL for
machine learning [11]. However, it did not address how to compose different DSLs
together, or show that similar performance and productivity gains could be ob-
tained for different domains. We present new compiled embedded DSLs for data
querying (OptiQL), collections (OptiCollections), graph analysis (OptiGraph),
and mesh computation (OptiMesh). We show that the DSLs were easier to build
than stand-alone counterparts, can achieve competitive performance, and can
also be composed together in multiple ways.

Specifically, we make the following contributions:

– We implement four new DSLs for different domains and show that they can
be implemented with a small number of reusable components and still achieve
performance exceeding optimized libraries (up to 125x) and comparable to
stand-alone DSLs (within 30%).

– We are the first to show both fine-grained and coarse-grained composition
of high performance compiled DSLs.

– We demonstrate that different DSLs used in the same application can be
co-optimized to additionally improve performance by up to 1.82x.

The source code for the new DSLs we have developed is open-source and
freely available at: http://github.com/stanford-ppl/Delite/.

3

2 Background

In this paper, we investigate the problem of composing different DSLs embedded
in a common back-end. The back-end we will use for our examples is Delite, but
any back-end with similar structure could use the same techniques. Similarly,
while Delite is typically targeted from embedded Scala front-ends, it could also
be targeted from an external parser. Delite is essentially a Scala library that DSL
authors can use to build an intermediate representation (IR), perform optimiza-
tions, and generate parallel code for multiple hardware targets. To illustrate at
a high-level how Delite works, consider a simple example of a program using a
Delite Vector DSL to add two vectors:
val (v1,v2) = (Vector.rand(1000), Vector.rand(1000))
val a = v1+v2
println(a)

The DSL implementation maps each language statement (Vector.rand, +,
println) in this program to parallel operators (ops), each of which represents a
specific parallel pattern (e.g. map, reduce, fork/join, sequential). These patterns
are provided by Delite and extended by the DSL. The mapping is accomplished
using a technique called Lightweight Modular Staging (LMS), a form of staged
metaprogramming [12]. The essence is that the DSL implements operations on
types wrapped in an abstract type constructor, Rep[T]. Type inference is used
to hide this wrapped type from application code, as in the above snippet. In-
stead of immediate evaluation, DSL operations on Rep[T] construct an IR node
representing the operation. For example, when the statement v1+v2 is executed,
it actually calls a DSL method that constructs a Delite IR node and returns
a well-typed placeholder (Rep[Vector[Double]]) for the result. To ensure that all
host language operations can be intercepted and lifted, we use a modified version
of the Scala compiler for front-end compilation, Scala-Virtualized [13], that en-
ables overloading even built-in Scala constructs such as if (c) a else b. DSLs can
perform domain-specific optimizations by traversing and transforming the IR;
Delite uses the same mechanisms to perform generic optimizations (such as dead
code elimination) for all DSLs. Finally, after the full IR has been constructed
and optimized, Delite generates code for each operation, based on its parallel
pattern, to multiple targets (Scala, C++, CUDA). The resulting generated code
is executed in a separate step to compute the final answer.

Figure 2 illustrates the key reusable components of the Delite compiler ar-
chitecture: common IR nodes, data structures, parallel operators, built-in opti-
mizations, traversals, transformers, and code generators. DSLs are developed by
extending these reusable components with domain-specific semantics. Further-
more, Delite is modular; any service it provides can be overridden by a particular
DSL with a more customized implementation.

3 High-level Common Intermediate Representation

To achieve high performance for an application composed out of multiple DSLs,
each DSL must provide competitive performance, not incur high overhead when
crossing between DSL sections, and be co-optimizable. Moreover, for this sort of
composition to be a practical approach, DSLs targeting narrow problem domains

4

Delite	
Execu+on	
Graph	

Scala	
CUDA	
OpenCL	

gen	 ops	
parallel	

domain	

mul$view	 IR	 traversals	 generated	 code	

.	 .	 .	

Co
de

	 g
en

er
at
or
s	

data	 structures	

Gen	 analyses	

Gen	 transformers	

Generic	 op+miza+on	

DS	 analyses	

DS	 transformers	

DS	 op+miza+on	

Fig. 2: Components of the Delite Framework. An application is written in a DSL, which
is composed of data structures and structured computations represented as a multi-
view IR. The IR is transformed by iterating over a set of traversals for both generic
(Gen) and domain-specific (DS) optimizations. Once the IR is optimized, heterogeneous
code generators emit specialized data structures and ops for each target along with the
Delite Execution Graph (DEG) that encodes dependencies between computations.

and modern hardware should be as easy to construct as optimized libraries (or
as close as possible). One way of achieving these goals is through a common in-
termediate representation containing reusable, high level computation and data
primitives with a minimal set of restrictions that enable efficiency and optimiza-
tion. In this section we describe how the Delite IR meets this criteria and propose
a simple data exchange format for embedded DSLs.

3.1 Structured Computation

In order to optimize composed DSL blocks, they must share, or be transformable
to, a common intermediate representation (IR) at some level. This level should
retain enough high-level semantics to allow coarse-grained optimization and code
generation; once an operation has been lowered to low-level primitives such as
instructions over scalars, it is as difficult to target heterogeneous hardware as in
a general purpose language. If DSLs do not share a common IR at some level, the
best we can do is attempt to compose their generated code, which is a low-level
and error-prone strategy that does not allow co-optimization.

We have proposed parallel patterns as a base IR that is well-suited to opti-
mization and code generation for different DSLs and heterogeneous devices [8].
The new DSLs presented in this paper offer more evidence that parallel patterns
are a strong choice of base IR. Previously, Delite supported Sequential, Loop, Map,
Reduce, ZipWith, Foreach, and Filter patterns. To support the new DSLs, we added
support for GroupBy, Join (generic inner join), Sort, ForeachReduce (foreach with
global reductions), and FlatMap patterns. Using the patterns as a base IR allows
us to perform op fusion automatically for each DSL, which is a key optimization
when targeting data parallel hardware such as GPUs.

3.2 Structured Data

In the same way that a common, structured IR allows DSL operations to be
optimized and code generated in a uniform way, a common data representation

5

is also required at some level. In addition to enabling the internal representation
of DSL data structures to be reusable, a common representation facilitates com-
munication between DSL blocks and enables pipeline optimizations; a DSL can
directly consume the output of another DSL’s block, so we can (for example)
fuse the first DSL’s operation that constructs the output with the second DSL’s
operation that consumes it.

We use structs of a fixed set of primitives as the common data representa-
tion. Delite DSLs still present domain-specific types to end users (e.g. Vector) and
methods on instances of those types (e.g. +) get lifted into the IR. However, the
back-end data structures must be implemented as structs (for example, Vector
can be implemented with an Int length field and an Array data field). The fields
currently allowed in a Delite Struct are: numerics (e.g. Int), Boolean, String, Array,
HashMap, or other Structs. By restricting the content of data structures, Delite is
able to perform optimizations such as array-of-struct (AoS) to struct-of-array
(SoA) conversion and dead field elimination (DFE) automatically [14]. Further-
more, since the set of primitives is fixed, Delite can implement these primitives
on each target platform (e.g. C++, CUDA) and automatically generate code for
DSL structs. Delite also supports user-defined data structures by lifting the new
keyword defining an anonymous class [13]. An application developer can write
code like the following:
val foo = new Record { val x = "bar"; val y = 42 }

Record is a built-in type provided by Delite that serves as a tag for the Scala-
Virtualized compiler. The Scala-Virtualized compiler forwards any invocation
of new with a Record type to Delite, which will then construct a corresponding
Struct. Field accesses to the record are type-checked by the Scala-Virtualized
compiler. In this way, all DSL and user types can uniformly be lowered to one
of the primitives, or a Struct of primitives.

3.3 Data Exchange Format

The final piece required for composability is the ability for application developers
to convert from domain-specific data types to common data types in order to
communicate between DSL blocks. This is necessary because we do not want to
expose the internal representation of the domain-specific types to users.

A simple solution that we use is for DSL authors to optionally implement
methods to/from{Primitive} between each DSL data type and a corresponding
primitive type. For example, a DSL author would provide toArray and fromArray
methods on DSL types where this makes sense (e.g. Vector), or toInt and fromInt
for a type NodeId. These methods become part of the DSL specification and
enable application developers to export and import DSL objects depending on
their needs. For example, a graph could be exported using a snippet like:
// G: Graph
// returns an array of node ids and an array of edge ids
new Record { val nodes = G.nodes.map(node => node.Id.toInt).toArray

val edges = G.edges.map(edge => edge.Id.toInt).toArray }

or just one of the properties of the graph could be exported using:
// G: Graph, numFriends: NodeProperty[Int]
// returns an array of ints corresponding to the number of friends of each node

6

G.nodes.map(node => numFriends(node)).toArray

We consider in the next section how to actually compose snippets together.
Assuming this facility, though, importing is similar. For example, a vector could
be constructed from the output of the previous snippet using:
// numFriends: Array[Int]
val v = Vector.fromArray(numFriends)

The key aspect of the data exchange format is that it should not prevent
optimization across DSL blocks or impose substantial overhead to box and unbox
the results. We handle this by implementing the to/from functions as either scalar
conversions or loops in the common IR. Then, for example, a loop constructing
an array will be automatically fused together with the loop consuming the array,
resulting in no overhead while still ensuring safe encapsulation. The loop fusion
algorithm is described in previous work [14].

4 Methods for Composing Compiled DSLs

In this section, we describe two ways of composing compiled DSLs that are
embedded in a common back-end. The first way is to combine DSLs that are
designed to work with other DSLs, i.e. DSLs that make an “open-world” assump-
tion. The second way is to compose “closed-world” DSLs by compiling them in
isolation, lowering them to a common, high-level representation, recombining
them and then optimizing across them. Both methods rely on DSLs that share
a common high-level intermediate representation as described in the previous
section.

4.1 Open-world: Fine-grained Cooperative Composition

“Open-world” composition means essentially designing embedded DSLs that are
meant to be layered or included by other embedded DSLs as modules. For this
kind of composition to be feasible, all of the DSLs must be embedded in the
same language and framework in both the front-end and the back-end.

Once embedded in a common host environment, DSL composition reduces to
object composition in the host language. This is the classic “modularity” aspect
of DSLs built using LMS [9]. For example, consider the following DSL definition
for a toy DSL Vectors embedded in Scala:
trait Vectors extends Base with MathOps with ScalarOps with VectorOps

The DSL is composed of several traits that contain different DSL data types
and operations. Each trait extends Base which contains common IR node defini-
tions. A different DSL author can extend Vectors to create a new DSL, Matrices,
simply by extending the relevant packages:
trait Matrices extends Vectors with MatrixOps with ExtVectorOps

Each of the mixed-in traits represents a collection of IR node definitions.
Traits that contain optimizations and code generators can be extended in the
same way. These traits define Matrices as a superset of Vectors, but Matrices users
only interact with Matrices and do not need to be aware of the existence of Vectors.
Furthermore, since the composition is via inheritance, the Matrices DSL can
extend or overload operations on the Vector data type, e.g. inside ExtVectorOps.

7

Since Vectors is encapsulated as a separate object, it can be reused by multiple
DSLs.

Open-world DSLs can also be composed by application developers. For ex-
ample, suppose we also have a visualization DSL:
trait Viz extends Base with GraphicsOps with ChartOps with ImageOps

A Scala program can effectively construct a new DSL on the fly by mixing
multiple embedded DSLs together:
trait MyApp extends Matrices with Viz {
def main() {
// assuming relevant DSL functions
val m = Matrix.rand(100); display(m.toArray)

}
}

In this example we make use of the data exchange format described in Sec-
tion 3.3 in order to communicate data between the DSLs. When DSL users
invoke a Viz operation, that operation will construct a Viz IR node. Note that
after mix-in, the result is effectively a single DSL that extends common IR
nodes; optimizations that operate on the generic IR can occur even between op-
erations from different DSLs. This is analogous to libraries building upon other
libraries, except that now optimizing compilation can also be inherited. DSLs
can add analyses and transformations that are designed to be included by other
DSLs. The trade-off is that DSL authors and application developers must be
aware of the semantics they are composing and are responsible for ensuring that
transformations and optimizations between DSLs retain their original semantics.
Namespacing can also be a pitfall; DSL traits cannot have conflicting object or
method names since they are mixed in to the same object. We avoid this problem
by using conventions like DSL-specific prefixes (e.g. viz_display).

4.2 Closed-world: Coarse-grained Isolated Composition

As the previous section pointed out, there are issues with simply mixing em-
bedded DSLs together. In particular, some DSLs require restricted semantics in
order to perform domain-specific analyses and transformations that are required
for correctness or performance. These “closed-world” DSLs are not designed to
arbitrarily compose with other DSLs. Furthermore, any DSL with an external
front-end is necessarily closed-world, since the parser only handles that DSL’s
grammar. However, it is still possible to compose closed-world DSLs that share
a common back-end. Either they are implemented in the same language as the
back-end and programmatically interface with it (as with Scala and Delite), or
they target a serialized representation (such as source code) that is the input to
a common back-end. This kind of coarse grained composition has three steps:

1. Independently parse each DSL block and apply domain-specific optimiza-
tions

2. Lower each block to the common high-level IR, composing all blocks into a
single intermediate program

3. Optimize the combined IR and generate code

We discuss how we implemented these steps in Delite next.

8

Scopes: independent compilation DSLs that have an external front-end can be in-
dependently compiled by invoking the DSL parser on a string. However, in order
to independently compile DSL blocks that are embedded in a host language, we
need a coarse-grained execution block. We have modified the Scala-Virtualized
compiler to add Scopes for this purpose. A Scope is a compiler-provided type that
acts as a tag to encapsulate DSL blocks. For example, using the Vectors DSL
from the previous section, we can instantiate a Scope as follows:
def Vectors[R](b: => R) = new Scope[VectorsApp, VectorsCompiler, R](b)

VectorsApp and VectorsCompiler are Scala traits that define the DSL interface
and its implementation, respectively. The Scala-Virtualized compiler transforms
function calls with return type Scope into an object that composes the two traits
with the given block, making all members of the DSL interface available to
the block’s content. The implementation of the DSL interface remains hidden,
however, to ensure safe encapsulation. The object’s constructor then executes
the block. The result is that each Scope is staged and optimized independently
to construct the domain-specific IR.

Given the previous definition, a programmer can write a block of VectorsDSL
code inside a Scala application, which then gets desugared, making all member
definitions of VectorsApp, but not of VectorsCompiler, available to the Scope’s body:

Vectors {
val v = Vector.rand(100)
// ...

}

(a) Scala code with DSL scope

abstract class DSLprog extends VectorsApp {
def apply = {
val v = Vector.rand(100)
// ...

}
}
(new DSLprog with VectorsCompiler).result

(b) Scala code after desugaring

Lowering and composing The ability to compile blocks of DSL code into inde-
pendent IRs is the first step, but in order to compose multiple blocks in a single
application we still need a way to communicate across the blocks and a way to
combine the IRs. Consider the following application snippet:
val r = Vectors {
val (v1,v2) = (Vector.rand(100),Vector.rand(100))
DRef(linreg(v1,v2).toArray) // return linear regression of v1, v2

}
Viz { display(r.get) }

We again use the toArray functionality to export the data from Vectors into a
common format that Viz can handle. However, before we lower to a common rep-
resentation, the type of the output of Vectors is a symbol with no relation to Viz.
Therefore, we introduce the path independent type DRef[T] to abstract over the
path dependent scope result. During staging, r.get returns a placeholder of type
Rep[DeliteArray[Double]]. When the IRs are lowered and stitched together, the
placeholder is translated to the concrete symbolic result of linreg(v1,v2).toArray.
This mechanism is type-safe, preserves scope isolation, and does not occlude op-
timizations on the lowered IR.

9

After performing domain-specific optimizations and transformations, the IR
for each scope is lowered to the base IR in a language-specific fashion. We use
staging to perform this translation by extending our previous work on staged
interpreters for program transformation [14] to support transforming IR nodes to
an arbitrary target type. A Transformer is a generic Traversal that maps symbolic
IR values (type Exp[A]) to values of type Target[A], where Target is an abstract
type constructor. During the traversal, a callback transformStm is invoked for each
statement encountered.

The extended Transformer interface for cross-DSL transformation is:
trait Transformer extends Traversal {
import IR._
type Target[A]
var subst = immutable.Map.empty[Exp[Any], Target[Any]]
def apply[A](x: Exp[A]): Target[A] = ... // lookup from subst
override def traverseStm(stm: Stm): Unit = // called during traversal
subst += (stm.sym -> transformStm(stm)) // update substitution with result

def transformStm(stm: Stm): Target[Any] // to be implemented in subclass
}

To transform from one IR to another, lower-level IR language, we instantiate
a transformer with type Target set to the Rep type of the destination IR:
trait IRTransformer extends Transformer {
val dst: IR.DST
type Target[A] = IR.Rep[A]
def transformStm(stm: Stm): Target[Any] = // override to implement custom transform
IR.mirror(stm.rhs, this) // call default case

}

The type of the destination IR dst: IR.DST is constrained by the source IR to
handle all defined IR nodes. This enables implementing a default case for the
transformation (def mirror), which maps each source IR node to the correspond-
ing smart constructor in the destination IR.

Taking the Vectors DSL as an example, we define:
trait Vectors extends Base {
def vector_zeros(n: Rep[Int]): Rep[Vector[Double]]

}
trait VectorExp extends Vectors with BaseExp {
type DST <: Vectors
case class VectorZeros(n: Rep[Int]) extends Def[Vector[Double]]
def vector_zeros(n: Rep[Int]): Rep[Vector[Double]] = VectorZeros(n)
def mirror[A:Manifest](e: Def[A], f: IRTransformer): f.dst.Rep[A] = {
case VectorZeros(n) => f.dst.vector_zeros(f(n))
...

}
}

The use of Scala’s dependent method types f.dst.Rep[A] and the upper-
bounded abstract type DST <: Vectors ensure type safety when specifying trans-
formations. Note that the internal representation of the destination IR is not
exposed, only its abstract Rep interface. This enables, for example, interfacing
with a textual code generator that defines Rep[T] = String. Perhaps more impor-

10

tantly, this enables programmatic lowering transforms by implementing a smart
constructor (e.g. vector_zeros) to expand into a lower-level representation using
arrays instead of constructing an IR node that directly represents the high-level
operation.

An alternative to using staged interpreters is to simply generate code to a
high-level intermediate language that maps to the common IR. We implemented
this by generating code to the “Delite IL”, a low-level API around Delite ops, that
is itself staged to build the Delite IR. For example, a Reduce op in the original
application would be code generated to call the method
reduce[A](size: Rep[Int], func: Rep[Int] => Rep[A], cond: List[Rep[Int]] => Rep[Boolean],

zero: => Rep[A], rFunc: (Rep[A],Rep[A]) => Rep[A])

in the Delite IL.
The staged interpreter transformation and the code generation to the Delite

IL perform the same operation and both use staging to build the common IR.
The staged interpreter translation is type-safe and goes through the heap, while
the Delite IL goes through the file system and is only type-checked when the
resulting program is (re-)staged. On the other hand, for expert programmers, a
simplified version of the Delite IL may be desirable to target directly.

Cross DSL optimization After the IRs have been composed, we apply all of our
generic optimizations on the base IR (i.e. parallel patterns). Like in the open-
world case, we can now apply optimizations such as fusion, common subexpres-
sion elimination (CSE), dead code elimination (DCE), dead field elimination
(DFE), and AoS to SoA conversion across DSL snippets. Since the base IR
still represents high level computation, these generic optimizations still have
much higher potential impact than their analogs in a general purpose compiler.
Fusion across DSL snippets is especially useful, since it can eliminate the over-
head of boxing and unboxing the inputs and outputs to DSL blocks using the
to/from{Primitive} data exchange format. The usefulness of applying these opti-
mizations on composed blocks instead of only on individual blocks is evaluated in
Section 6. Note that the cross-DSL optimizations fall out for free after composing
the DSLs; we do not have to specifically design new cross-DSL optimizations.

4.3 Interoperating with non-DSL code

The previous section showed how we can compose coarse-grain compiled DSL
blocks within a single application. However, it is also interesting to consider how
we can compose DSL blocks with arbitrary host language code. We can again
use Scope, but with a different implementation trait, to accomplish this. Consider
the following, slightly modified definition of the Vectors scope:
def Vectors[R](b: => R) = new Scope[VectorsApp, VectorsExecutor, R](b)

Whereas previously the Vectors scope simply compiled the input block, the
trait VectorsExecutor both compiles and executes it, returning a Scala object as a
result of the execution. VectorsExecutor can be implemented by programmatically
invoking the common back-end on the lowered IR immediately. This enables us
to use compiled embedded DSLs within ordinary Scala programs:
def main(args: Array[String]) {
foo() // Scala code

11

Vectors { val v = Vector.ones(5); v.pprint }
// more Scala code ..

}

This facility is the same that is required to enable interactive usage of DSLs
using the REPL of the host language, which is especially useful for debugging.
For example, we can use the new Vectors scope to execute DSL statements inside
the Scala-Virtualized REPL:
scala> Vectors { val v = Vector.ones(5); v.pprint }
[1 1 1 1 1]

5 New Compiled Embedded DSL Implementations

We implemented four new high performance DSLs embedded inside Scala and
Delite. In this section, we briefly describe each DSL and show how their imple-
mentation was simplified by reusing common components. The four new DSLs
are OptiQL, a DSL for data querying, OptiCollections, an optimized subset of
the Scala collections library, OptiGraph, a DSL for graph analysis based on
Green-Marl [3] and OptiMesh, a DSL for mesh computations based on Liszt [2].
Despite being embedded in both a host language and common back-end, the
DSLs cover a diverse set of domains with different requirements and support
non-trivial optimizations.

5.1 OptiQL

OptiQL is a DSL for data querying of in-memory collections, and is heavily
inspired by LINQ [15], specifically LINQ to Objects. OptiQL is a pure language
that consists of a set of implicitly parallel query operators, such as Select, Average,
and GroupBy, that operate on OptiQL’s core data structure, the Table, which
contains a user-defined schema. Listing 1.1 shows an example snippet of OptiQL
code that expresses a query similar to Q1 in the TPC-H benchmark. The query
first excludes any line item with a ship date that occurs after the specified date.
It then groups each line item by its status. Finally, it summarizes each group by
aggregating the group’s line items and constructs a final result per group.

Since OptiQL is SQL-like, it is concise and has a small learning curve for
many developers. However, unoptimized performance is poor. Operations always
semantically produce a new result, and since the in-memory collections are typi-
cally very large, cache locality is poor and allocations are expensive. OptiQL uses
compilation to aggressively optimize queries. Operations are fused into a single
loop over the dataset wherever possible, eliminating temporary allocations, and
datasets are internally allocated in a column-oriented manner, allowing OptiQL
to avoid allocating columns that are not used in a given query. Although not
implemented yet, OptiQL’s eventual goal is to use Delite’s pattern rewriting
and transformation facilities to implement other traditional (domain-specific),
cost-based query optimizations.

5.2 OptiCollections

Where OptiQL provides a SQL-like interface, OptiCollections is an example of
applying the underlying optimization and compilation techniques to the Scala

12

1 // lineItems: Table[LineItem]
2 val q = lineItems Where(_.l_shipdate <= Date(‘‘1998-12-01’’)).
3 GroupBy(l => (l.l_linestatus)) Select(g => new Record {
4 val lineStatus = g.key
5 val sumQty = g.Sum(_.l_quantity)
6 val sumDiscountedPrice = g.Sum(l => l.l_extendedprice*(1.0-l.l_discount))
7 val avgPrice = g.Average(_.l_extendedprice)
8 val countOrder = g.Count
9 }) OrderBy(_.returnFlag) ThenBy(_.lineStatus)

Listing 1.1: OptiQL: TPC-H Query 1 benchmark

1 val sourcedests = pagelinks flatMap { l =>
2 val sd = l.split(":")
3 val source = Long.parseLong(sd(0))
4 val dests = sd(1).trim.split(" ")
5 dests.map(d => (Integer.parseInt(d), source))
6 }
7 val inverted = sourcedests groupBy (x => x._1)

Listing 1.2: OptiCollections: reverse web-links benchmark

collections library. The Scala collections library provides several key generic data
types (e.g. List) with rich APIs that include expressive functional operators such
as flatMap and partition. The library enables writing succinct and powerful pro-
grams, but can also suffer from overheads associated with high-level, functional
programs (especially the creation of many intermediate objects). OptiCollec-
tions uses the exact same collections API, but uses Delite to generate optimized,
low-level code. Most of the infrastructure is shared with OptiQL. The prototype
version of OptiCollections supports staged versions of Scala’s Array and HashMap.
Listing 1.2 shows an OptiCollections application that consumes a list of web
pages and their outgoing links and outputs a list of web pages and the set of
incoming links for each of the pages (i.e. finds the reverse web-links). In the first
step, the flatMap operation maps each page to pairs of an outgoing link and the
page. The groupBy operation then groups the pairs by their outgoing link, yield-
ing a HashMap of pages, each paired with the collection of web pages that link to
it.

The example has the same syntax as the corresponding Scala collections
version. A key benefit of developing OptiCollections is that it can be mixed in
to enrich other DSLs with a range of collection types and operations on those
types. It can also be used as a transparent, drop-in replacement for existing Scala
programs using collections and provide improved performance.

5.3 OptiGraph

OptiGraph is a DSL for static graph analysis based on the Green-Marl DSL
[3]. OptiGraph enables users to express graph analysis algorithms using graph-
specific abstractions and automatically obtain efficient parallel execution. Opti-
Graph defines types for directed and undirected graphs, nodes, and edges. It
allows data to be associated with graph nodes and edges via node and edge

13

1 val PR = NodeProperty[Double](G)
2 for (t <- G.Nodes) {
3 val rank = (1-d) / N + d*
4 Sum(t.InNbrs){w => PR(w)/w.OutDegree}
5 diff += abs(rank - PR(t))
6 PR <= (t,rank)
7 }

(a) OptiGraph: PageRank

1 N_P<Double> PR;
2 Foreach (t: G.Nodes) {
3 Double rank = (1-d) / N + d*
4 Sum(w:t.InNbrs){w.PR/w.OutDegree()};
5 diff += | rank - t.PR |;
6 t.PR <= rank @ t;
7 }

(b) Green-Marl: PageRank

Fig. 3: The major portion of the PageRank algorithm implemented in both OptiGraph
and Green-Marl. OptiGraph is derived from Green-Marl, but required small syntactic
changes in order to be embedded in Scala.

property types and provides three types of collections for node and edge storage
(namely, Set, Sequence, and Order). Furthermore, OptiGraph defines constructs
for BFS and DFS order graph traversal, sequential and explicitly parallel iteration,
and implicitly parallel in-place reductions and group assignments. An important
feature of OptiGraph is also its built-in support for bulk synchronous consistency
via deferred assignments.

Figure 3 shows the parallel loop of the PageRank algorithm [16] written
in both OptiGraph and Green-Marl. PageRank is a well-known algorithm that
estimates the relative importance of each node in a graph (originally of web pages
and hyperlinks) based on the number and page-rank of the nodes associated with
its incoming edges (InNbrs). OptiGraph’s syntax is slightly different since it is
embedded in Scala and must be legal Scala syntax. However, the differences
are small and the OptiGraph code is not more verbose than the Green-Marl
version. In the snippet, PR is a node property associating a page-rank value
with every node in the graph. The <= statement is a deferred assignment of the
new page-rank value, rank, for node t; deferred writes to PR are made visible
after the for loop completes via an explicit assignment statement (not shown).
Similarly, += is a scalar reduction that implicitly writes to diff only after the
loop completes. In contrast, Sum is an in-place reduction over the parents of
node t. This example shows that OptiGraph can concisely express useful graph
algorithms in a naturally parallelizable way; the ForeachReduceDelite op implicitly
injects the necessary synchronization into the for loop.

5.4 OptiMesh

OptiMesh is an implementation of Liszt on Delite. Liszt is a DSL for mesh-
based partial differential equation (PDE) solvers [2]. Liszt code allows users
to perform iterative computation over mesh elements (e.g. cells, faces). Data
associated with mesh elements are stored in external fields that are indexed by
the elements. Listing 1.3 shows a simple OptiMesh program that computes the
flux through edges in the mesh. The for statement in OptiMesh is implicitly
parallel and can only be used to iterate over mesh elements. head and tail are
built-in accessors used to navigate the mesh in a structured way. In this snippet,
the Flux field stores the flux value associated with a particular vertex. As the
snippet demonstrates, a key challenge with OptiMesh is to detect write conflicts
within for comprehensions given a particular mesh input.

14

1 for (edge <- edges(mesh)) {
2 val flux = flux_calc(edge)
3 val v0 = head(edge)
4 val v1 = tail(edge)
5 Flux(v0) += flux // possible write conflicts!
6 Flux(v1) -= flux
7 }

Listing 1.3: OptiMesh: simple flux computation

DSL Delite Ops Generic Opts. Domain-Specific Opts.

OptiQL Map, Reduce, Filter, Sort,
Hash, Join

CSE, DCE, code motion,
fusion, SoA, DFE

OptiGraph ForeachReduce, Map, Reduce,
Filter

CSE, DCE, code motion,
fusion

OptiMesh ForeachReduce CSE, DCE, code motion stencil collection & color-
ing transformation

OptiCollections Map, Reduce, Filter, Sort,
Hash, ZipWith, FlatMap

CSE, DCE, code motion,
fusion, SoA, DFE

Fig. 4: Sharing of DSL operations and optimizations.

OptiMesh solves this challenge by implementing the same domain-specific
transformation as Liszt. First, the OptiMesh program is symbolically evaluated
with a real mesh input to obtain a stencil of mesh accesses in the program. Af-
ter the stencil is collected, an interference graph is built and disjoint loops are
constructed using coloring. OptiMesh uses a Delite Transformer to simplify this
implementation – the transformation is less than 100 lines of code. OptiMesh
was the only new DSL we implemented that required a domain-specific transfor-
mation; the others were able to produce high performance results just by reusing
generic optimizations and parallel code generation.

5.5 Reuse

By embedding the front-ends of our DSLs in Scala, we did not have to imple-
ment any lexing, parsing, or type checking. As we showed in the OptiGraph vs.
Green-Marl example, the syntactic difference compared to a stand-alone DSL
can still be relatively small. By embedding our DSL back-ends in Delite, each
DSL was able to reuse parallel patterns, generic optimizations, common library
functionality (e.g. math operators), and code generators for free. One important
characteristic of the embedded approach is that when a feature (e.g. a parallel
pattern) is added to support a new DSL, it can be reused by all subsequent
DSLs. For example, we added the ForeachReduce pattern for OptiGraph, but it is
also used in OptiMesh.

Figure 4 summarizes the characteristics and reuse of the new DSLs introduced
in this section. The DSLs inherit most of their functionality from Delite, in the
form of a small set of reused parallel patterns and generic optimizations. The
DSLs use just 9 Delite ops total; seven ops (77.7%) were used in at least two
DSLs; three (33.3%) were used in at least three DSLs. At the same time the DSLs
are not constrained to built-in functionality, as demonstrated by OptiMesh’s
domain-specific optimizations.

15

6 Case Studies

We present four case studies to evaluate our new DSLs. The first two case studies
compare individual DSL performance against existing alternative programming
environments and the second two evaluate applications composing the DSLs
in the two ways described in this paper (open and closed world). OptiQL is
compared to LINQ [15] and OptiCollections to Scala Collections [17]. LINQ
and Scala Collections are optimized libraries running on managed platforms
(C#/CLR and Scala/JVM). We compare OptiMesh and OptiGraph to Liszt [2]
and Green-Marl [3] respectively, stand-alone DSLs designed for high performance
on heterogeneous hardware. Liszt and Green-Marl both generate and execute
C++ code and have been shown to outperform hand-optimized C++ for the
applications shown in this section. Each Delite DSL generated Scala code for
the CPU and CUDA code for the GPU. For composability, we compare against
an analogous Scala library implementation of each application when using a
combination of DSLs to solve larger application problems.

All of our experiments were performed on a Dell Precision T7500n with two
quad-core Xeon 2.67GHz processors, 96GB of RAM, and an NVidia Tesla C2050.
The CPU generated Scala code was executed on the Oracle Java SE Runtime
Environment 1.7.0 and the Hotspot 64-bit server VM with default options. For
the GPU, Delite executed CUDA v4.0. We ran each application ten times (to
warm up the JIT) and report the average of the last 5 runs. For each run we
timed the computational portion of the application. For each application we
show normalized execution time relative to our DSL version with the speedup
listed at the top of each bar.

6.1 Compiled Embedded vs. Optimized Library

OptiQL LINQ OptiQL LINQ OptiQL LINQ OptiQL LINQ

0.91 52.73 0.188 19.29 182.7 663.76 31.54 154.56

55.65 22.83 182.03 668.7 31.82 140.02

55.7 28.17 182.46 673.11 31.71 137.96

184.21 31.82

183.36 31.68

0.91 54.69333 0.188 23.43 182.952 668.5233 31.714 144.18 (raw)

0.016638 1 0.003437 0.428389 0.273666 1 0.047439 0.215669 (time)

60.10256 1 290.922 2.334329 3.654091 1 21.07975 4.636727 (speedup)

total speedup

group/soa 0.91 4.461538

fusion 4.06 2.118227

staging 8.6 2.161628

array 18.59 2.065627

lift date 38.4 1.424219

iterable 54.69

OptiQL

Q1 Q2

1 thread 8 threads 1 thread 8 threads

1.0

2.3

60.1 291
0

0.2

0.4

0.6

0.8

1

1.2

1P 8P

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e

5GB
1.0

4.6
3.7

21.1

0

0.2

0.4

0.6

0.8

1

1.2

1P 8P

LINQ

OptiQL

5GB 1.0	

1.7	

2.4	
2.8	

3.4	
4.3	

6.8	
10.5	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1P	 2P	 4P	 8P	

N
o
rm

al
iz
e
d
	 E
xe
cu
;
o
n
	 T
im

e
	

75	 MB	 1.0	

1.9	

3.4	
5.5	

1.6	

3.5	

6.1	 9.0	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1P	 2P	 4P	 8P	

Scala	 Parallel	
Collec;ons	

Op;Collec;ons	

463	 MB	

(a) OptiQL: TPC-H Q1 (left) and Q2 (right) (b) OptiCollections: web-link benchmark

Fig. 5: Normalized execution time of applications written in OptiQL and OptiCollec-
tions. Speedup numbers are reported on top of each bar.

OptiQL: TPC-H queries 1 & 2 Figure 5(a) compares the performance of queries
1 & 2 of the popular TPC-H benchmark suite on OptiQL vs. LINQ. Without any
optimizations, OptiQL performance for the queries (not shown) is comparable

16

to LINQ performance. However, such library implementations of the operations
suffer from substantial performance penalties compared to an optimized and
compiled implementation. Naïvely, the query allocates a new table (collection)
for each operation and every element of those tables is a heap-allocated object
to represent the row. The two most powerful optimizations we perform are con-
verting to an SoA representation and fusing across GroupBy operations to create
a single (nested) loop to perform the query. Transforming to an SoA representa-
tion allows OptiQL to eliminate all object allocations for Q1 since all of the fields
accessed by Q1 are JVM primitive types, resulting in a data layout consisting
entirely of JVM primitive arrays. All together these optimizations provide 125x
speedup over parallel LINQ for Q1 and 4.5x for Q2.

OptiCollections: Reverse web-link graph Figure 5(b) shows the result for the re-
verse web-link application discussed in Section 5.2 running on OptiCollections
compared to Scala Parallel Collections. Scala Parallel Collections is implemented
using Doug Lea’s highly optimized fork/join pool with work stealing [18]. The
OptiCollections version is significantly faster at all thread counts and scales bet-
ter with larger datasets. The improvement is due to staged compilation, which
helps in two ways. First, OptiCollections generates statically parallelized code.
Unlike Scala collections, functions are inlined directly to avoid indirection. On
the larger dataset, this does not matter as much, but on the smaller dataset the
Scala collections implementation has higher overhead which results in worse scal-
ing. Second, the OptiCollections implementation benefits from fusion and from
transparently mapping (Int,Int) tuples to Longs in the back-end. These optimiza-
tions greatly reduce the number of heap allocations in the parallel operations,
which improves both scalar performance and scalability.

6.2 Compiled Embedded vs. External DSL

GPU Liszt GPU Liszt CPU GPU Liszt GPU Liszt CPU

2.6 2.199043 73.9821 1.641 1.39132 5.03738 (raw)

0.035144 0.029724 1 0.325765 0.276199 1 (time) 0.035144 0.029724

28.45465 33.64287 1 3.069701 3.620576 1 (speedup) 28.45465 33.64287

OptiMesh

Shallow Water Scalar Convection

1.0

33.6 28.5
0

0.2

0.4

0.6

0.8

1

1.2

N
o

r
m

a
li

z
e

d
 E

x
e

c
u

t
io

n
 T

im
e

28.5

33.6

0

0.01

0.02

0.03

0.04

Shallow Water

N
o

r
m

a
li

z
e

d
 E

x
e

c
u

t
io

n
 T

im
e

OptiMesh GPU

3.1

3.6

0

0.1

0.2

0.3

0.4

Scalar Convection

Liszt GPU

1P GPU GPU

1.0

3.6
3.1

0

0.2

0.4

0.6

0.8

1

1.2

Liszt CPU

Liszt GPU

OptiMesh

1P GPU GPU

C++

1 2 4 8 1 2 4 8

0.05 0.03 0.03 0.03

0.05 0.03 0.03 0.03

0.05 0.03 0.03 0.03

0.05 0.03 0.03 0.03

0.05 0.03 0.03 0.03

0.05 0.03 0.03 0.03 0.09 0.05 0.03 0.03 0.03 (raw)

1 0.6 0.6 0.6 1.8 1 0.6 0.6 0.6 (time)

1 1.666667 1.666667 1.666667 0.555556 1 1.666667 1.666667 1.666667 (speedup)

0.555556 0.333333 0.333333 0.333333 1 0.555556 0.333333 0.333333 0.333333 (time rel. c++)

1.8 3 3 3 1 1.8 3 3 3 (speedup rel. c++)

100k x 800k

Green MarlOptiGraph

1.7 1.7 1.7

0

0.2

0.4

0.6

0.8

1

1P 2P 4P 8P

N
o

r
m

a
li

z
e

d
 E

x
e

c
u

t
io

n
 T

im
e

100k nodes x
800k edges

1.0

1.8

2.9
3.3

.75

1.5

2.9
3.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1P 2P 4P 8P

Green Marl

OptiGraph

8M nodes x
64M edges

(a) OptiMesh: Shallow Water (left) (b) OptiGraph: PageRank
Scalar Convection (right)

Fig. 6: Normalized execution time of applications written in OptiMesh and OptiGraph.
Speedup numbers are reported on top of each bar.

Productivity First, we consider the programming effort required to build Op-
tiMesh and OptiGraph compared to the stand-alone versions they were based

17

on. Each Delite DSL compiler took approximately 3 months by a single gradu-
ate student to build using Delite. OptiMesh (≈5k loc) and OptiGraph (≈2.5k
loc) were developed by 1st year Ph.D. students with no prior experience with
Scala or Delite. In comparison, Liszt (≈25k loc Scala/C++) took a group of
2-3 compiler experts approximately one year to develop and Green-Marl (≈30k
loc mostly C++) took a single expert approximately 6 months. As discussed in
Section 5.5, most of the code reduction is due to reuse from being both front
and back-end embedded (in Scala and Delite respectively). The Delite DSLs did
not need to implement custom parsers, type checkers, base IRs, schedulers, or
code generators. Similarly, while OptiMesh and OptiGraph do not implement
all of the optimizations performed by Liszt and Green-Marl, they inherit other
Delite optimizations (e.g. fusion) for free. For comparison, the Delite framework
is ≈11k and LMS is ≈7k lines of Scala code. It is interesting to note that ≈4k
lines of the Liszt code is for Pthreads and CUDA parallelization; a major ben-
efit of using Delite is that parallelization for multiple targets is handled by the
framework.

OptiMesh: Shallow water simulation & Scalar convection Figure 6(a) shows the
performance of OptiMesh and Liszt on two scientific applications. Each appli-
cation consists of a series of ForeachReduce operations surrounded by iterative
control-flow to step the time variable of the PDE. It is well-suited to GPU exe-
cution as mesh sizes are typically large and the cost of copying the input data to
the GPU is small compared to the amount of computation required. However,
the original applications around which the Liszt language was designed were
only implemented using MPI. Liszt added GPU code generation and demon-
strated significant speedups compared to the CPU version. For both OptiMesh
applications, Delite is able to generate and execute a CUDA kernel for each
colored foreach loop and achieve performance comparable to the Liszt GPU im-
plementation. Liszt’s (and OptiMesh’s) ability to generate both CPU and GPU
implementations from a single application source illustrates the benefit of using
DSLs as opposed to libraries that only target single platforms.

OptiGraph: PageRank Figure 6(b) compares the performance of the PageRank
algorithm [16] implemented in OptiGraph to the Green-Marl implementation
on two different uniform random graphs of sizes 100k nodes by 800k edges and
8M nodes by 64M edges, respectively. This benchmark is dominated by the ran-
dom memory accesses during node neighborhood exploration. Since OptiGraph’s
memory access patterns and the memory layout of its back-end data structures
are similar to those of Green-Marl, OptiGraph’s sequential performance and scal-
ability across multiple processors is close to that of Green-Marl. Although the
smaller graph fits entirely in cache, the parallel performance is limited by cache
conflicts when accessing neighbors and the associated coherency traffic. The se-
quential difference between OptiGraph and Green-Marl in the larger graph can
be attributed to the difference between executing Scala generated code vs. C++.
However, as we increase the number of the cores, the benchmark becomes in-
creasingly memory-bound and the JVM overhead becomes negligible.

18

1 def valueIteration(actionResults: Rep[Map[Action, (Matrix[Double],Vector[Double])]],
2 initValue: Rep[Vector[Double]], discountFactor: Rep[Double], tolerance: Rep[Double]) = {
3 val bestActions = Seq[Action](initValue.length)
4 var (value, delta) = (initValue, Double.MaxValue)
5 while (abs(delta) > tolerance) {
6 val newValue = Vector.fill(0,value.length) { i =>
7 val allValues = actionResults map { case (action,(prob,cost)) =>
8 (action, (prob(i) * value(i) * discountFactor + cost(i)).sum) }
9 val minActionValue = allValues reduce { case ((act1,v1),(act2,v2)) =>
10 if (v1 <= v2) (act1,v1) else (act2,v2) }
11 bestActions(i) = minActionValue.key; minActionValue.value }
12 delta = diff(newValue, value); value = newValue }
13 (value, bestActions) }

Listing 1.4: Value Iteration of a Markov Decision Process

1.0

3.9

8.0
44.9

8.1
54.4

0

0.2

0.4

0.6

0.8

1

1.2

1P 8P

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

Scala Library

OptiDSLs No Cross Opt

OptiDSLs

1.0

6.4

17.3
51.1 31.4 79.9

0

0.2

0.4

0.6

0.8

1

1.2

1P 8P

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

Scala Library

OptiDSLs No Cross Opt

OptiDSLs

(a) small action set (b) large action set

Fig. 7: Normalized execution time of value iteration of a Markov decision process. Per-
formance is shown both with and without cross-DSL optimization. Speedup numbers
are reported on top of each bar.

6.3 Open-world composability

We illustrate open-world composability by implementing the value iteration al-
gorithm for a Markov decision process (MDP), shown in Listing 1.4, using two
different DSLs, OptiLA and OptiCollections. OptiLA is a DSL for linear algebra
providing Matrix and Vector operations, and is specifically designed to be included
by other DSLs by making no closed-world assumptions. OptiLA is a refactored
portion of OptiML [11], a machine learning DSL designed for statistical inference
problems expressed with vectors, matrices, and graphs. Although OptiML orig-
inally contained its own linear algebra components, we have found that several
DSLs need some linear algebra capability, so we extracted OptiLA and modified
OptiML to extend it using the techniques in Section 4.1. OptiCollections was
also designed to be included by other DSLs and applications, as described in
Section 5.2.

The algorithm uses an OptiCollections Map to associate each user-defined
Action with a probability density Matrix and cost Vector. OptiLA operations (line
8) compute the value for the next time step based on an action, and OptiCol-
lections operations apply the value propagation to every action and then find

19

the minimal value over all actions. This process is repeated until the minimizing
value converges.

Figure 7 shows the performance for this application implemented using Scala
Parallel Collections compared to using OptiLA and OptiCollections. For both
datasets, the OptiDSL version shows significant speedup over the library im-
plementation as well as improved parallel performance, due mainly to two key
optimizations: loop fusion and AoS to SoA transformation. The latter trans-
formation eliminates all of the tuples and class wrappers in lines 7-10, leaving
only nested arrays. The OptiDSLs “No Cross Opt” bar simulates the behavior
of compiling the code snippets for each DSL independently and then combining
the resulting optimized code snippets together using some form of foreign func-
tion interface. Therefore this version does not include SoA transformations or
fusion across DSLs, but does still fuse operations fully contained within a single
DSL, most notably the OptiLA code snippet on line 8 of Listing 1.4. Figure 7(a)
shows only very modest speedups after adding DSL cross-optimization. This is
because the majority of the execution time is spent within the OptiLA code
snippet, and so only fusion within OptiLA was necessary to maximize perfor-
mance. Figure 7(b), however, shows the behavior for different data dimensions.
In this case the total execution time spent within the OptiLA section is small,
making fusion across the nested OptiCollections/OptiLA operations critical to
maximizing performance.

Overall this case study shows that while sometimes applications can achieve
good performance by simply offloading key pieces of computation to a highly
optimized implementation (applications that call BLAS libraries are a classic
example of this), other applications and even the same application with a differ-
ent dataset require the compiler to reason about all of the pieces of computation
together at a high level and be capable of performing optimizations across them
in order to maximize performance.

6.4 Closed-world composability

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

OptiDSLs

OptiDSLs
No Cross Opt

Scala Library

OptiDSLs

OptiDSLs
No Cross Opt

Scala Library

Normalized Execution Time

OptiQL

OptiGraph

OptiML

4.2

7.2

1.6

14.1

19.7

1 P

8 P

Fig. 8: Normalized execution time of Twitter data analysis. Performance is shown for
each DSL section with and without cross-DSL optimization. Speedup numbers are
reported on top of each bar.

In this example, we combine OptiQL, OptiGraph, and OptiML using the
closed-world composition strategy discussed in Section 4.2. We use the three

20

1 type Tweet = Record { val time: String; val fromId: Int; val toId: Int;
2 val lang: String; val text: String; val RT: Boolean }
3 val q = OptiQL {
4 //tweets: Table[Tweet]
5 val reTweets = tweets.Where(t => t.lang == "en"
6 && Date(t.time) > Date("2008-01-01") && t.RT)
7 val allTweets = tweets.Where(t => t.lang == "en")
8 DRef((reTweets.toArray, allTweets.toArray))
9 }
10 val g = OptiGraph {
11 val in = q.get
12 val G = Graph.fromArray(in._1.map(t => (t.fromId, t.toId)))
13 val (LCC, RT) = (NodeProperty[Double](G), NodeProperty[Double](G))
14 Foreach(G.Nodes) { s =>
15 // count number of nodes connected in a triangle (omitted)
16 if (total < 1) LCC(s) = 0 else LCC(s) = triangles.toDouble / total
17 RT(s) = G.InNbrs(s).length
18 }
19 DRef((LCC.toArray, RT.toArray, in._1, in._2))
20 }
21 val r = OptiML {
22 val in = g.get
23 val scaledRT = norm(log((Vector.fromArray(in._2) + 1)))
24 val X = Matrix(Vector.ones(in._1.length), Vector.fromArray(in._1))
25 val theta = (X*X.t).inv * (X*scaledRT) // unweighted linear regression
26 // compute statistics on tweets (omitted)
27 }

Listing 1.5: Twitter Graph Analysis using multiple DSLs

DSLs together to implement a data analysis application on a Twitter dataset
used in [19]. A truncated version of the application code is shown in Listing
1.5. The idea is to compute statistics related to the distribution of all tweets, of
retweets (tweets that have been repeated by another user), and of the relationship
between user connectivity and the number of times they have been retweeted.

The application follows a typical data analytic pipeline. It first loads data
from a log file containing tweets with several attributes (sender, date, text, etc.).
It then queries the dataset to extract relevant information using an OptiQL Where
statement. The filtered data is passed on to OptiGraph and OptiML which both
analyze it and compute statistics. OptiGraph builds a graph where nodes are
users and edges are retweets and computes the LCC (local clustering coefficient)
and retweet counts for each user. The LCC is a loose approximation of the
importance of a particular user. The OptiML section fits the filtered tweet data
from OptiQL to a normal distribution and also runs a simple unweighted linear
regression on the LCC and retweet counts that the OptiGraph code computed.
The final results of the application are the distribution and regression coefficients.

Figure 8 shows the performance of this application implemented with Scala
Parallel Collections compared to the Delite DSLs with and without cross-DSL
optimization. The graph is broken down by the time spent in each DSL section
(or for the library version, in the corresponding Scala code). Since we are us-

21

ing the closed world model, each DSL is independently staged, lowered to the
common Delite representation, and re-compiled. The application code is still a
single program and the DSLs pass data in memory without any boxing overhead.
Therefore, in contrast to using stand-alone compiled DSLs for each computation,
we incur no serialization overhead to pipe data from one DSL snippet to the
other. The Scala library version, which is also a single application, is approxi-
mately 5x slower than the non-cross-optimized DSL version on 1 thread and 10x
slower on 8 threads. The speedup is due to optimizations performed by Delite
across all DSLs. The OptiQL code benefits from filter fusion as well as lifting the
construction of a Date object outside of the filter loop, which demonstrates the
high-level code motion that is possible with more semantic information (the Date
comparison is a virtual method call for Scala, so it does not understand that the
object is constant in the loop). The OptiGraph version is faster than the cor-
responding library snippet mainly due to compiling away abstractions (we use
only primitive operations on arrays in the generated code compared to Scala’s
ArrayBuffer, which has run-time overhead). The OptiGraph code is also the least
scalable, since this particular graph is highly skewed to a few dominant nodes
and the graph traversal becomes very irregular. Due to the additional overhead
of the library version, this effect is more pronounced there. Finally, the OptiML
version is faster mainly because of loop fusion and CSE across multiple linear
algebra operations.

Co-optimizing the DSLs, which is enabled by composing them, produces fur-
ther opportunities. The Delite compiler recognizes that OptiGraph and OptiML
together require only 4 fields per tweet of the original 6 (OptiGraph uses “toId”
and “fromId” and OptiML uses “text” and “hour”). The remaining fields are
DFE’d by performing SoA transformation on the filter output and eliminating
arrays that are not consumed later. The other major cross DSL optimization we
perform is to fuse the filter from OptiQL with their consumers in OptiGraph
and OptiML. Note that the fusion algorithm is strictly data dependent; the Op-
tiML snippet and OptiQL snippets are syntactically far apart, but can still be
fused. This example also shows that since the DSL blocks are composed into a
single IR, we can fuse across multiple scope boundaries when co-optimizing. All
together, cross optimizations result in an extra 1.72x sequential speedup over
the composed Delite DSL version without cross optimizations.

7 Related Work

Our embedded DSL compilers build upon numerous previously published work in
the areas of DSLs, extensible compilers, heterogeneous compilation, and parallel
programming.

There is a rich history of DSL compilation in both the embedded and stand-
alone contexts. Elliot et al. [4] pioneered embedded compilation and used a
simple image synthesis DSL as an example. Feldspar [20] is an embedded DSL
that combines shallow and deep embedding of domain operations to generate
high performance code. For stand-alone DSL compilers, there has been consid-
erable progress in the development of parallel and heterogeneous DSLs. Liszt [2]
and Green-Marl [3] are discussed in detail in this paper. Diderot [21] is a par-
allel DSL for image analysis that demonstrates good performance compared to

22

hand-written C code using an optimized library. The Spiral system [22] progres-
sively lowers linear transform algorithms through a series of different DSLs to
apply optimizations on different levels [23]. Subsets of Spiral have also been im-
plemented using Scala and LMS. Giarrusso et al. [24] investigate database-like
query optimizations for collection classes and present SQuOpt, a query optimizer
for a DSL that, like OptiCollections, mimics the Scala collections API and also
uses techniques similar to LMS to obtain an IR for relevant program expressions.
Our work aggregates many of the lessons and techniques from previous DSL ef-
forts and makes them easier to apply to new domains, and to the problem of
composing DSLs.

Recent work has begun to explore how to compose domain-specific languages
and runtimes. Mélusine [25] uses formal modeling to define DSLs and their com-
position. Their approach attempts to reuse existing models and their mappings
to implementations. Dinkelar et al. [26] present an architecture for composing
purely embedded DSLs using aspect-oriented concepts; a meta-object is shared
between all the eDSLs and implements composition semantics such as join points.
MadLINQ [27] is an embedded matrix DSL that integrates with DryadLINQ [28],
using LINQ as the common back-end. Compared to these previous approaches,
our work is the first to demonstrate composition and co-optimization with high
performance, statically compiled DSLs.

There has also been work on extensible compilation frameworks aimed to-
wards making DSLs and high performance languages easier to build. Racket [29]
is a dialect of Scheme designed to make constructing new programming languages
easier. Spoofax [30] and JetBrains MPS [31] are language workbenches for defin-
ing new DSLs and can generate automatic IDE support from a DSL grammar.
While these efforts also support DSL reuse and program transformation, they are
generally more focused on expressive DSL front-ends, whereas Delite’s emphasis
is on high performance and heterogeneous compilation. Both areas are important
to making DSL development easier and could be used together to complement
each other. On the performance side, telescoping languages [32] automatically
generate optimized domain-specific libraries. They share Delite’s goal of incorpo-
rating domain-specific knowledge in compiler transformations. Delite compilers
extend optimization to DSL data structures and also optimize both the DSL and
the program using it in a single step.

Outside the context of DSLs, there have been efforts to compile high-level
general purpose languages to lower-level (usually device-specific) programming
models. Mainland et al. [6] use type-directed techniques to compile an embedded
array language, Nikola, from Haskell to CUDA. This approach suffers from the
inability to overload some of Haskell’s syntax (if-then-else expressions) which is
not an issue with our version of the Scala compiler. Copperhead [7] automatically
generates and executes CUDA code on a GPU from a data-parallel subset of
Python. Nystrom et al. [33] show a library-based approach to translating Scala
programs to OpenCL code through Java bytecode translation. Since the starting
point of these compilers is byte code or generic Python/Java statements, the
opportunities for high-level optimizations are more limited relative to DSL code.

23

8 Conclusion

In this paper we showed that a common back-end can be used to compose high
performance, compiled domain-specific languages. The common back-end also
provides a means to achieve meaningful reuse in the compiler implementations
when targeting heterogeneous devices. We demonstrated this principle by imple-
menting four new diverse DSLs (OptiQL, OptiCollections, OptiGraph, and Op-
tiMesh) in Delite, an extensible compilation framework for compiled embedded
DSLs. The DSLs required only 9 parallel operators and 7 were reused in at least
two DSLs. We showed that OptiQL and OptiCollections exceed the performance
of optimized library implementations by up to 125x. OptiGraph and OptiMesh
are both based on existing stand-alone DSLs (Green-Marl and Liszt respectively)
but require less code to build and achieve no worse than 30% slow-down. In addi-
tion to each DSL providing high performance and targeting multicore and GPU
architectures, applications composing multiple DSLs perform well and benefit
from cross-DSL optimization. To the best of our knowledge, this work is the first
to demonstrate high performance compiled DSL composability.

Acknowledgements. We are grateful to the anonymous reviewers for their de-
tailed suggestions, to Nada Amin for her assistance with the Scala-Virtualized
compiler, and to Peter Kessler and Zach DeVito for reviewing previous ver-
sions of this paper. This research was sponsored by DARPA Contract, Xgraphs;
Language and Algorithms for Heterogeneous Graph Streams, FA8750-12-2-0335;
Army contract AHPCRC W911NF-07-2-0027-1; NSF grant, BIGDATA: Mid-
Scale: DA: Collaborative Research: Genomes Galore, IIS-1247701; NSF grant,
SHF: Large: Domain Specific Language Infrastructure for Biological Simulation
Software, CCF-1111943; Stanford PPL affiliates program, Pervasive Parallelism
Lab: Oracle, AMD, Intel, and NVIDIA; and European Research Council (ERC)
under grant 587327 “DOPPLER”. Authors also acknowledge additional support
from Oracle. The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of DARPA or the U.S. Government.

References

1. Chafi, H., Sujeeth, A.K., Brown, K.J., Lee, H., Atreya, A.R., Olukotun, K.: A
domain-specific approach to heterogeneous parallelism. PPoPP (2011)

2. DeVito, Z., Joubert, N., Palacios, F., Oakley, S., Medina, M., Barrientos, M., Elsen,
E., Ham, F., Aiken, A., Duraisamy, K., Darve, E., Alonso, J., Hanrahan, P.: Liszt:
A domain specific language for building portable mesh-based PDE solvers. SC
(2011)

3. Hong, S., Chafi, H., Sedlar, E., Olukotun, K.: Green-marl: A DSL for easy and
efficient graph analysis. ASPLOS (2012)

4. Elliott, C., Finne, S., de Moor, O.: Compiling embedded languages. In Taha, W.,
ed.: Semantics, Applications, and Implementation of Program Generation. Volume
1924 of LNCS. Springer Berlin / Heidelberg (2000) 9–26

5. Leijen, D., Meijer, E.: Domain specific embedded compilers. DSL, New York, NY,
USA, ACM (1999) 109–122

6. Mainland, G., Morrisett, G.: Nikola: embedding compiled GPU functions in haskell.
Haskell ’10, New York, NY, USA, ACM (2010) 67–78

7. Catanzaro, B., Garland, M., Keutzer, K.: Copperhead: compiling an embedded
data parallel language. PPoPP, New York, NY, USA, ACM (2011) 47–56

8. Brown, K.J., Sujeeth, A.K., Lee, H., Rompf, T., Chafi, H., Odersky, M., Olukotun,
K.: A heterogeneous parallel framework for domain-specific languages. PACT
(2011)

24

9. Rompf, T., Odersky, M.: Lightweight modular staging: a pragmatic approach to
runtime code generation and compiled DSLs. GPCE, New York, NY, USA, ACM
(2010) 127–136

10. Rompf, T., Sujeeth, A.K., Lee, H., Brown, K.J., Chafi, H., Odersky, M., Olukotun,
K.: Building-blocks for performance oriented DSLs. DSL (2011)

11. Sujeeth, A.K., Lee, H., Brown, K.J., Rompf, T., Wu, M., Atreya, A.R., Odersky,
M., Olukotun, K.: OptiML: an implicitly parallel domain-specific language for
machine learning. ICML (2011)

12. Taha, W., Sheard, T.: MetaML and multi-stage programming with explicit anno-
tations. Theor. Comput. Sci. 248(1-2) (2000) 211–242

13. Moors, A., Rompf, T., Haller, P., Odersky, M.: Scala-virtualized. PEPM (2012)
14. Rompf, T., Sujeeth, A.K., Amin, N., Brown, K., Jovanovic, V., Lee, H., Jon-

nalagedda, M., Olukotun, K., Odersky, M.: Optimizing data structures in high-level
programs. POPL (2013)

15. Meijer, E., Beckman, B., Bierman, G.: LINQ: Reconciling object, relations and
XML in the .NET framework. SIGMOD, New York, NY, USA, ACM (2006) 706–
706

16. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bringing order to the web. Technical Report 1999-66, Stanford InfoLab (November
1999) Previous number = SIDL-WP-1999-0120.

17. Prokopec, A., Bagwell, P., abd Martin Odersky, T.R.: A generic parallel collection
framework. Euro-Par (2010)

18. Lea, D.: A java fork/join framework. JAVA ’00, New York, NY, USA, ACM (2000)
36–43

19. Yang, J., Leskovec, J.: Patterns of temporal variation in online media. WSDM ’11,
New York, NY, USA, ACM (2011) 177–186

20. Axelsson, E., Claessen, K., Sheeran, M., Svenningsson, J., Engdal, D., Persson,
A.: The design and implementation of feldspar an embedded language for digital
signal processing. IFL’10, Berlin, Heidelberg, Springer-Verlag (2011) 121–136

21. Chiw, C., Kindlmann, G., Reppy, J., Samuels, L., Seltzer, N.: Diderot: a parallel
DSL for image analysis and visualization. PLDI, New York, NY, USA, ACM (2012)
111–120

22. Püschel, M., Moura, J., Johnson, J., Padua, D., Veloso, M., Singer, B., Xiong,
J., Franchetti, F., Gacic, A., Voronenko, Y., Chen, K., Johnson, R., Rizzolo, N.:
Spiral: Code generation for DSP transforms. Proceedings of the IEEE 93(2) (feb.
2005) 232 –275

23. Franchetti, F., Voronenko, Y., Püschel, M.: Formal loop merging for signal trans-
forms. PLDI (2005) 315–326

24. Giarrusso, P.G., Ostermann, K., Eichberg, M., Mitschke, R., Rendel, T., Kästner,
C.: Reify your collection queries for modularity and speed! AOSD (2013)

25. Estublier, J., Vega, G., Ionita, A.: Composing domain-specific languages for wide-
scope software engineering applications. In Briand, L., Williams, C., eds.: Model
Driven Engineering Languages and Systems. Volume 3713 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg (2005) 69–83

26. Dinkelaker, T., Eichberg, M., Mezini, M.: An architecture for composing embedded
domain-specific languages. AOSD, ACM (2010) 49–60

27. Qian, Z., Chen, X., Kang, N., Chen, M., Yu, Y., Moscibroda, T., Zhang, Z.:
Madlinq: large-scale distributed matrix computation for the cloud. EuroSys ’12,
New York, NY, USA, ACM (2012) 197–210

28. Isard, M., Yu, Y.: Distributed data-parallel computing using a high-level program-
ming language. SIGMOD, New York, NY, USA, ACM (2009) 987–994

29. Flatt, M.: Creating languages in racket. Commun. ACM 55(1) (January 2012)
48–56

30. Kats, L.C., Visser, E.: The spoofax language workbench: rules for declarative
specification of languages and IDEs. OOPSLA ’10, New York, NY, USA, ACM
(2010) 444–463

31. JetBrains: Meta Programming System (2009)
32. Kennedy, K., Broom, B., Chauhan, A., Fowler, R., Garvin, J., Koelbel, C., McCosh,

C., Mellor-Crummey, J.: Telescoping languages: A system for automatic generation
of domain languages. Proceedings of the IEEE 93(3) (2005) 387–408

33. Nystrom, N., White, D., Das, K.: Firepile: run-time compilation for GPUs in scala.
GPCE, New York, NY, USA, ACM (2011) 107–116

25

