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Motivation

ÂFARM:  Flexible Architecture Research Machine

ÂA high -performance flexible vehicle for exploring 
new tightly -coupled computer architectures

ÂNew heterogeneous architectures have unique 
requirements for prototyping

ÂMimic heterogeneous structures and 
communication patterns

ÂCommunication among prototype components 
must be efficient...



Motivational Examples

Â Prototype a hardware memory watchdog using 
an FPGA
Â FPGA should know about system - level 

memory requests
Â FPGA must be placed closely enough to CPUs 

to monitor memory accesses

Â An intelligent memory profiler
Â Hardware race detection
Â Transactional memory accelerator
Â Other fine -grained, tightly -coupled coupled 

coprocessors...
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Motivation

Â CPUs + FPGAs:  Sweet spot for prototypes
Â Speed + Flexibility
Â New, exotic computer architectures are being 

introduced:  need high performing prototypes

Â Natural fit for hardware acceleration
Â Explore new functionalities
Â Low -volume production

Â ñCoherentò FPGAs
Â Prototype architectures featuring rapid, fine -

grained communication between elements
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Motivation:  
The Coherent FPGA

Â Why coherence?
Â Low latency coherent polling
Â FPGA knows about system off -chip accesses

Â Intelligent memory configurations, memory 
profiling

ÂFPGA can ñownò memory
Â Memory access indirection: security, encryption, 

etc.

Â Whatôs required for coherence?
Â Logic for coherent actions: snoop handler, etc.
Â Properly configure system registers
Â Coherent interconnect protocol (proprietary)
Â Perhaps a cache
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The Stanford FARM

ÂFARM (Flexible Architecture Research Machine)

ÂA scalable fast -prototyping environment 

ÂñExplore your HW idea with a real system .ò

ÂCommodity full - speed CPUs, memory, I/O 

ÂRich SW support (OS, compiler , debugger é )

ÂReal applications and realistic input data sets

ÂScalable

ÂMinimal design effort



The Stanford FARM:
Single Node
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Â Multiple units connected by high -
speed memory fabric 

Â CPU (or GPU ) units give state -of-
the -art computing power

Â OS and other SW support

Â FPGA units provide flexibility 

Â Communication is done by the 
(coherent) memory protocol

Â Single node scalability is 
limited by the memory 
protocol

An example of a single FARM node



The Stanford FARM:
Multi-Node

Â Multiple FARM nodes connected 
by a scalable interconnect 

Â Infiniband , ethernet , PCIe é

Â A small cluster of your own
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An example of a multi-node FARM configuration



Â Initial platform for single FARM node
Â Built by A&D Technology, Inc.
Â
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The Stanford FARM:
Procyon System
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Â CPU Unit (x2)
Â AMD Opteron Socket F ( Barcelona)
Â DDR2 DIMMs x 2
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The Stanford FARM:
Procyon System
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Â FPGA Unit (x1)
Â Altera Stratix II, SRAM, DDR
Â Debug ports, LEDs, etc.
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The Stanford FARM:
Procyon System
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Â Each unit is a board
Â All units connected via cHT backplane

Â Coherent HyperTransport (version 2)
Â We implemented cHT compatibility for 

FPGA unit (next slide)

The Stanford FARM:
Procyon System



The Stanford FARM:
Base FARM Components
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Â Block diagram of FARM on Procyon system
Â Three interfaces for user application

ÂCoherent cache interface
ÂData stream interface
ÂMemory mapped register interface

* cHTCore was created by the University 
of Manhiem



The Stanford FARM:
Base FARM Components
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Â FPGA Unit: communication 
logic + user application



The Stanford FARM:
Data Transfer Engine

Â Ensures protocol - level 
correctness of cHT
transactions
Â e.g. Drop stale data 

packets when multiple 
response packets arrive

Â Handles snoop requests 
(pull data from the cache 
or respond negative)

Â Traffic handler: memory 
controller for reads/writes 
to FARM memory
ÂMMR loads/stores also 

handled here



The Stanford FARM:
Coherent Cache

Â Coherently stores system 
memory for use by application

Â Write buffer: stores evicted 
cache lines until write back

Â Prefetch buffer: extended fill 
buffer to increase data fetch 
bandwidth

Â Cache lines either modified or 
invalid



Resource Usage

Resource Usage

4 Kbit Block RAMs 144 (24%)

Logic Registers 16K (15%)

LUTs 20K

Â Cache module is heavily parameterized
ÂNumbers reflect 4KB, 2 -way set associative 

cache
Â And our FPGA is a Stratix II...
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Communication Mechanisms

Â CPU Č FPGA

Â Write to Memory Mapped Register ( MMR) 

Number of 
Register Reads

Registers on 
FARM FPGA

Registers on a 
PCIe Device

1 672 ns 1240 ns

2 780 ns 2417 ns

4 1443 ns 4710 ns



Communication Mechanisms

Â CPU Č FPGA

Â Write to Memory Mapped Register ( MMR) 

Â Asynchronous write to FPGA ( streaming interface )

Â FPGA owns special address ranges which causes non -
temporal store. 

Â Page table attribute: Write -Combining. 

(Weaker consistency than non -cacheable)

Â Write to cacheable address; FPGA reads it out later 
(coherent polling )



Communication Mechanisms

Â FPGA Č CPU
Â CPU read from MMR (non -coherent polling)

Â FPGA writes to cacheable address; CPU reads it out 
later (coherent polling)



Communication Mechanisms

Â FPGA Č CPU
Â CPU read from MMR (non -coherent polling)

Â FPGA writes to cacheable address; CPU reads it out 
later (coherent polling)

Â FPGA throws interrupt



Proof of Concept:
Transactional Memory

Â Prototype hardware acceleration for TM
Â Transactional Memory

Â Optimistic concurrency control (programming 
model)

Â Promise: simplifying parallel programming
Â Problem: Implementation overhead

Â Hardware TM: expensive, risky
Â Software TM: too slow
ÂHybrid TM: FPGAs are ideal for prototypingé  



Brieflyé

Â Hardware performs conflict 
detection and notification

Â Messages
Â Address transmission (CPUĄFPGA)

Â At every shared read
Â Fine -grained & asynchronous
Â Stream interface

Â Ask for Commit (CPUĄFPGAĄCPU)
Â Once at the end of a transaction.
Â Synchronous; full round - trip 

latency
Â Non -coherent polling

Â Violation notification (FPGAĄCPU)
Â Asynchronous
Â Coherent polling

FPGA
HW

Thread1 Thread2

Read A

Read B

To write B

OK to 
commit?

Youôre 
Violated

Yes



Performance Results



Thank You!

Questions?
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Summary: TMACC

Â A hybrid TM scheme

Â Offloads conflict detection to external HW

Â Saves instructions and meta -data

Â Requires no core modification 

Â Prototyped on FARM

Â First actual implementation of Hybrid TM

Â Prototyping gave far more insight than simulation.

Â Very effective for medium - to - large sized 
transactions 

Â Small transaction performance gets better with ASIC or 
on -chip implementation.

Â Possible future combination with best -effort HTM




