
FARM: A Prototyping Environment
for Tightly-Coupled, Heterogeneous

Architectures

Tayo Oguntebi , Sungpack Hong,

Jared Casper, Nathan Bronson

Christos Kozyrakis , Kunle Olukotun

Outline

ÂMotivation

ÂThe Stanford FARM

ÂUsing FARM

Motivation

ÂFARM: Flexible Architecture Research Machine

ÂA high -performance flexible vehicle for exploring
new tightly -coupled computer architectures

ÂNew heterogeneous architectures have unique
requirements for prototyping

ÂMimic heterogeneous structures and
communication patterns

ÂCommunication among prototype components
must be efficient...

Motivational Examples

Â Prototype a hardware memory watchdog using
an FPGA
Â FPGA should know about system - level

memory requests
Â FPGA must be placed closely enough to CPUs

to monitor memory accesses

Â An intelligent memory profiler
Â Hardware race detection
Â Transactional memory accelerator
Â Other fine -grained, tightly -coupled coupled

coprocessors...

4

Motivation

Â CPUs + FPGAs: Sweet spot for prototypes
Â Speed + Flexibility
Â New, exotic computer architectures are being

introduced: need high performing prototypes

Â Natural fit for hardware acceleration
Â Explore new functionalities
Â Low -volume production

Â ñCoherentò FPGAs
Â Prototype architectures featuring rapid, fine -

grained communication between elements

5

Motivation:
The Coherent FPGA

Â Why coherence?
Â Low latency coherent polling
Â FPGA knows about system off -chip accesses

Â Intelligent memory configurations, memory
profiling

ÂFPGA can ñownò memory
Â Memory access indirection: security, encryption,

etc.

Â Whatôs required for coherence?
Â Logic for coherent actions: snoop handler, etc.
Â Properly configure system registers
Â Coherent interconnect protocol (proprietary)
Â Perhaps a cache

6

Outline

ÂMotivation

ÂThe Stanford FARM

ÂUsing FARM

The Stanford FARM

ÂFARM (Flexible Architecture Research Machine)

ÂA scalable fast -prototyping environment

ÂñExplore your HW idea with a real system .ò

ÂCommodity full - speed CPUs, memory, I/O

ÂRich SW support (OS, compiler , debugger é)

ÂReal applications and realistic input data sets

ÂScalable

ÂMinimal design effort

The Stanford FARM:
Single Node

MemoryMemory

Memory Memory

Core 0 Core 1

Core 2 Core 3

Core 0 Core 1

Core 2 Core 3

FPGA

SRAM

GPU / Stream
I
O

Â Multiple units connected by high -
speed memory fabric

Â CPU (or GPU) units give state -of-
the -art computing power

Â OS and other SW support

Â FPGA units provide flexibility

Â Communication is done by the
(coherent) memory protocol

Â Single node scalability is
limited by the memory
protocol

An example of a single FARM node

The Stanford FARM:
Multi-Node

Â Multiple FARM nodes connected
by a scalable interconnect

Â Infiniband , ethernet , PCIe é

Â A small cluster of your own

MemoryMemory

Memory Memory

Core
0

Core
1

Core
2

Core
3

Core
0

Core
1

Core
2

Core
3

Core
0

Core
1

Core
2

Core
3

FPGA

SRAM

Infiniband

or other scalable

interconnect

I
O

An example of a multi-node FARM configuration

Â Initial platform for single FARM node
Â Built by A&D Technology, Inc.
Â

Â

Â

Â

Â

Â

Â

Â

Â

Â

The Stanford FARM:
Procyon System

Â

Â

Â CPU Unit (x2)
Â AMD Opteron Socket F (Barcelona)
Â DDR2 DIMMs x 2

Â

Â

Â

Â

Â

Â

Â

The Stanford FARM:
Procyon System

Â

Â

Â

Â

Â

Â FPGA Unit (x1)
Â Altera Stratix II, SRAM, DDR
Â Debug ports, LEDs, etc.

Â

Â

Â

Â

The Stanford FARM:
Procyon System

Â

Â

Â

Â

Â

Â

Â

Â

Â Each unit is a board
Â All units connected via cHT backplane

Â Coherent HyperTransport (version 2)
Â We implemented cHT compatibility for

FPGA unit (next slide)

The Stanford FARM:
Procyon System

The Stanford FARM:
Base FARM Components

2MB
L3 Shared Cache

é

Hyper
Transport

2MB
L3 Shared Cache

Hyper
Transport

32 Gbps

32 Gbps

~60ns

AMD Barcelona

6.4 Gbps

~380ns

6.4 Gbps cHTCoreÊ

Hyper Transport (PHY, LINK)

Altera Stratix II FPGA (132k Logic Gates)

Configurable

Coherent Cache

Data

Transfer Engine

Cache IF

Data Stream IF

User Application
MMR

IF

1.8G
Core 0
64K L1

512KB
L2

Cache

1.8G
Core 3
64K L1

512KB
L2

Cache

é

1.8G
Core 0
64K L1

512KB
L2

Cache

1.8G
Core 3
64K L1

512KB
L2

Cache

Â Block diagram of FARM on Procyon system
Â Three interfaces for user application

ÂCoherent cache interface
ÂData stream interface
ÂMemory mapped register interface

* cHTCore was created by the University
of Manhiem

The Stanford FARM:
Base FARM Components

cHTCoreÊ

Hyper Transport (PHY, LINK)

Altera Stratix II FPGA (132k Logic Gates)

Configurable

Coherent Cache

Data

Transfer Engine

Cache IF

Data Stream IF

User Application
MMR

IF

Â

Â

Â

Â

Â

Â FPGA Unit: communication
logic + user application

The Stanford FARM:
Data Transfer Engine

Â Ensures protocol - level
correctness of cHT
transactions
Â e.g. Drop stale data

packets when multiple
response packets arrive

Â Handles snoop requests
(pull data from the cache
or respond negative)

Â Traffic handler: memory
controller for reads/writes
to FARM memory
ÂMMR loads/stores also

handled here

The Stanford FARM:
Coherent Cache

Â Coherently stores system
memory for use by application

Â Write buffer: stores evicted
cache lines until write back

Â Prefetch buffer: extended fill
buffer to increase data fetch
bandwidth

Â Cache lines either modified or
invalid

Resource Usage

Resource Usage

4 Kbit Block RAMs 144 (24%)

Logic Registers 16K (15%)

LUTs 20K

Â Cache module is heavily parameterized
ÂNumbers reflect 4KB, 2 -way set associative

cache
Â And our FPGA is a Stratix II...

Outline

ÂMotivation

ÂThe Stanford FARM

ÂUsing FARM

Communication Mechanisms

Â CPU Č FPGA

Â Write to Memory Mapped Register (MMR)

Number of
Register Reads

Registers on
FARM FPGA

Registers on a
PCIe Device

1 672 ns 1240 ns

2 780 ns 2417 ns

4 1443 ns 4710 ns

Communication Mechanisms

Â CPU Č FPGA

Â Write to Memory Mapped Register (MMR)

Â Asynchronous write to FPGA (streaming interface)

Â FPGA owns special address ranges which causes non -
temporal store.

Â Page table attribute: Write -Combining.

(Weaker consistency than non -cacheable)

Â Write to cacheable address; FPGA reads it out later
(coherent polling)

Communication Mechanisms

Â FPGA Č CPU
Â CPU read from MMR (non -coherent polling)

Â FPGA writes to cacheable address; CPU reads it out
later (coherent polling)

Communication Mechanisms

Â FPGA Č CPU
Â CPU read from MMR (non -coherent polling)

Â FPGA writes to cacheable address; CPU reads it out
later (coherent polling)

Â FPGA throws interrupt

Proof of Concept:
Transactional Memory

Â Prototype hardware acceleration for TM
Â Transactional Memory

Â Optimistic concurrency control (programming
model)

Â Promise: simplifying parallel programming
Â Problem: Implementation overhead

Â Hardware TM: expensive, risky
Â Software TM: too slow
ÂHybrid TM: FPGAs are ideal for prototypingé

Brieflyé

Â Hardware performs conflict
detection and notification

Â Messages
Â Address transmission (CPUĄFPGA)

Â At every shared read
Â Fine -grained & asynchronous
Â Stream interface

Â Ask for Commit (CPUĄFPGAĄCPU)
Â Once at the end of a transaction.
Â Synchronous; full round - trip

latency
Â Non -coherent polling

Â Violation notification (FPGAĄCPU)
Â Asynchronous
Â Coherent polling

FPGA
HW

Thread1 Thread2

Read A

Read B

To write B

OK to
commit?

Youôre
Violated

Yes

Performance Results

Thank You!

Questions?

Backup Slides

Summary: TMACC

Â A hybrid TM scheme

Â Offloads conflict detection to external HW

Â Saves instructions and meta -data

Â Requires no core modification

Â Prototyped on FARM

Â First actual implementation of Hybrid TM

Â Prototyping gave far more insight than simulation.

Â Very effective for medium - to - large sized
transactions

Â Small transaction performance gets better with ASIC or
on -chip implementation.

Â Possible future combination with best -effort HTM

