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Abstract
Stochastic gradient descent (SGD) on a low-rank
factorization (Burer & Monteiro, 2003) is com-
monly employed to speed up matrix problems
including matrix completion, subspace tracking,
and SDP relaxation. In this paper, we ex-
hibit a step size scheme for SGD on a low-rank
least-squares problem, and we prove that, un-
der broad sampling conditions, our method con-
verges globally from a random starting point
within O(ε−1n log n) steps with constant prob-
ability for constant-rank problems. Our modifi-
cation of SGD relates it to stochastic power iter-
ation. We also show experiments to illustrate the
runtime and convergence of the algorithm.

1. Introduction
We analyze an algorithm to solve the stochastic optimiza-
tion problem

minimize E

[∥∥∥Ã−X∥∥∥2
F

]
subject to X ∈ Rn×n, rank (X) ≤ p,X � 0,

(1)

where p is an integer and Ã is a symmetric matrix drawn
from some distribution with bounded covariance. The so-
lution to this problem is the matrix formed by zeroing
out all but the largest p positive eigenvalues of the matrix
E[Ã]. This problem, or problems that can be transformed
to this problem, appears in a variety of machine learning
applications including matrix completion (Jain et al., 2013;
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Teflioudi et al., 2012; Chen et al., 2011), general data anal-
ysis (Zou et al., 2004), subspace tracking (Balzano et al.,
2010), principle component analysis (Arora et al., 2012),
optimization (Burer & Monteiro, 2005; Journée et al.,
2010; Mishra et al., 2013; Horstmeyer et al., 2014), and rec-
ommendation systems (Gupta et al., 2013; Oscar Boykin,
2013-2014).

Sometimes, (1) arises under conditions in which the sam-
ples Ã are sparse, but the matrix X would be too large to
store and operate on efficiently; a standard heuristic to use
in this case is a low-rank factorization (Burer & Monteiro,
2003). The idea is to substitute X = Y Y T and solve the
problem

minimize E

[∥∥∥Ã− Y Y T
∥∥∥2
F

]
subject to Y ∈ Rn×p.

(2)

By construction, if we set X = Y Y T , then X ∈ Rn×n,
rank (X) ≤ p, and X � 0; this allows us to drop these
constraints. Instead of having to store the matrixX (of size
n2), we only need to store the matrix Y (of size np).

In practice, many people use stochastic gradient descent
(SGD) to solve (2). Efficient SGD implementations can
scale to very large datasets (Recht & Ré, 2013; Niu et al.,
2011; Teflioudi et al., 2012; Agarwal et al., 2011; Bottou,
2010; Duchi et al., 2011; Bottou & Bousquet, 2008; Hu
et al., 2009). However, standard stochastic gradient descent
on (2) does not converge globally, in the sense that there
will always be some initial values for which the norm of
the iterate will diverge (see Appendix A).

People have attempted to compensate for this with sophis-
ticated methods like geodesic step rules (Journée et al.,
2010) and manifold projections (Absil et al., 2008); how-
ever, even these methods cannot guarantee global conver-
gence. Motivated by this, we describe Alecton, an algo-
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rithm for solving (2), and analyze its convergence. Alecton
is an SGD-like algorithm that has a simple update rule with
a step size that is a simple function of the norm of the it-
erate Yk. We show that Alecton converges globally. We
make the following contributions:

• We establish the convergence rate to a global optimum
of Alecton using a random initialization; in contrast,
prior analyses (Candès et al., 2014; Jain et al., 2013)
have required more expensive initialization methods,
such as the singular value decomposition of an empir-
ical average of the data.

• In contrast to previous work that uses bounds on the
magnitude of the noise (Hardt & Price, 2014; Hardt,
2014), our analysis depends only on the variance of
the samples. As a result, we are able to be robust to
different noise models, and we apply our technique to
these problems, which did not previously have global
convergence rates:

– matrix completion, in which we observe entries
of A one at a time (Jain et al., 2013; Keshavan
et al., 2010) (Section 4.1),

– phase retrieval, in which we observe tr(uTAv)
for randomly selected u, v (Candès et al., 2014;
Candès & Li, 2014) (Section 4.3), and

– subspace tracking, in whichA is a projection ma-
trix and we observe random entries of a random
vector in its column space (Balzano et al., 2010)
(Section 4.4).

Our result is also robust to different noise models.

• We describe a martingale-based analysis technique
that is novel in the space of non-convex optimization.
We are able to generalize this technique to some sim-
ple regularized problems, and we are optimistic that it
has more applications.

1.1. Related Work

Much related work exists in the space of solving low-rank
factorized optimization problems. Foundational work in
this space was done by Burer and Monteiro (Burer & Mon-
teiro, 2003; 2005), who analyzed the low-rank factorization
of general semidefinite programs. Their results focus on the
classification of the local minima of such problems, and on
conditions under which no non-global minima exist. They
do not analyze the convergence rate of SGD.

Another general analysis in Journée et al. (2010) exhibits a
second-order algorithm that converges to a local solution.
Their results use manifold optimization techniques to op-
timize over the manifold of low-rank matrices. These ap-
proaches have attempted to correct for falling off the man-
ifold using Riemannian retractions (Journée et al., 2010),

geodesic steps (Balzano et al., 2010), or projections back
onto the manifold. General non-convex manifold optimiza-
tion techniques (Absil et al., 2008) tell us that first-order
methods, such as SGD, will converge to a fixed point, but
they provide no convergence rate to the global optimum.
Our algorithm only involves a simple rescaling, and we are
able to provide global convergence results.

Our work follows others who have studied individual prob-
lems that we consider. Jain et al. (2013) study matrix com-
pletion and provides a convergence rate for an exact recov-
ery algorithm, alternating minimization; subsequent work
(Jain & Netrapalli, 2014) gives fast rates for projected gra-
dient descent. Candès et al. (2014) provide a similar re-
sult for phase retrieval. Sun & Luo (2014) give general
conditions under which various algorithms work for exact
matrix recovery. In contrast to these results, which require
expensive SVD-like operations to initialize, our results al-
low random initialization. Our provided convergence rates
apply to additional problems and SGD algorithms that are
used in practice (but are not covered by previous analysis).
However, our convergence rates are slower in their respec-
tive settings. This is likely unavoidable in our setting, as
we show that our convergence rate is optimal in this more
general setting (see Appendix E).

A related class of algorithms that are similar to Alecton is
stochastic power iteration (Arora et al., 2012). These al-
gorithms reconsider (1) as an eigenvalue problem, and uses
the familiar power iteration algorithm, adapted to a stochas-
tic setting. Stochastic power iteration has been applied to a
wide variety of problems (Arora et al., 2012; John Goes &
Lerman, 2014). Oja (1985) show convergence of this algo-
rithm, but provides no rate. Arora et al. (2013) analyze this
problem, and state that “obtaining a theoretical understand-
ing of the stochastic power method, or of how the step size
should be set, has proved elusive.” Our paper addresses this
by providing a method for selecting the step size, although
our analysis shows convergence for any sufficiently small
step size.

Shamir (2014) provide exponential-rate local convergence
results for a stochastic power iteration algorithm for PCA.
As they note, it can be used in practice to improve the
accuracy of an estimate returned by another, globally-
convergent algorithm such as Alecton.

Also recently, Balsubramani et al. (2013) and Hardt & Price
(2014) provide a global convergence rate for the stochastic
power iteration algorithm. Our result only depends on the
variance of the samples, while both their results require ab-
solute bounds on the magnitude of the noise. This allows us
to analyze a different class of noise models, which enables
us to do matrix completion, phase retrieval, and subspace
tracking in the same model.
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2. Algorithmic Derivation
We focus on the low-rank factorized stochastic opti-
mization problem (2). We can rewrite the objective as
E
[
f̃(Y )

]
, with sampled objective function

f̃(Y ) = tr
(
Y Y TY Y T

)
− 2tr

(
Y ÃY T

)
+
∥∥∥Ã∥∥∥2

F
.

In the analysis that follows, we let A = E
[
Ã
]
, and let its

eigenvalues be λ1 ≥ λ2 ≥ · · · ≥ λn with corresponding
orthonormal eigenvectors u1, u2, . . . , un (such a decompo-
sition is guaranteed since A is symmetric). The standard
stochastic gradient descent update rule for this problem is,
for some step size αk,

Yk+1 = Yk − αk∇f̃k(Y )

= Yk − 4αk

(
YkY

T
k Yk − ÃkYk

)
,

where Ãk is the sample we use at timestep k.

The low-rank factorization introduces symmetry into the
problem. If we let

Op =
{
U ∈ Rp×p | UTU = Ip

}
denote the set of orthogonal matrices in Rp×p, then f̃(Y ) =
f̃(Y U) for any U ∈ Op. Previous work has used mani-
fold optimization techniques to solve such symmetric prob-
lems (Journée et al., 2010). Absil et al. (2008) state that
stochastic gradient descent on a manifold has the general
form

xk+1 = xk − αkG
−1
xk
∇f̃k(xk),

where Gx is the matrix such that for all u and v,

uTGxv = 〈u, v〉x,

where the right side of this equation denotes the Rieman-
nian metric (do Carmo, 1992) of the manifold at x. For (2),
the manifold in question is

M = Rn×p/Op,

which is the quotient manifold of Rn×p under the orthog-
onal group action. According to Absil et al. (2008), this
manifold has induced Riemannian metric

〈U, V 〉Y = tr
(
UY TY V T

)
. (3)

For Alecton, we are free to pick any Riemannian metric and
step size. Inspired by (3), we pick a new step size parameter
η, and let αk = 1

4η and set

〈U, V 〉Y = tr
(
U(I + ηY TY )V T

)
.

(We can think of this as an interpolation between the flat
metric and the quotient metric.) With this, the SGD update
rule becomes

Yk+1 = Yk − η
(
YkY

T
k Yk − ÃkYk

) (
I + ηY T

k Yk
)−1

=
(
Yk
(
I + ηY T

k Yk
)
− η

(
YkY

T
k Yk − ÃkYk

))
·
(
I + ηY T

k Yk
)−1

=
(
I + ηÃk

)
Yk
(
I + ηY T

k Yk
)−1

.

For p = 1, choosing a Riemannian metric to use with SGD
results in the same algorithm as choosing an SGD step size
that depends on the iterate Yk. The same update rule would
result if we substituted

αk =
1

4
η
(
1 + ηY T

k Yk
)−1

into the standard SGD update formula. We can think of this
as the manifold results giving us intuition on how to set our
step size.

The reason why selecting this particular step size/metric is
useful in practice is that we can run the simpler update rule

Ȳk+1 =
(
I + ηÃk

)
Ȳk. (4)

If Ȳ0 = Y0, the iteration will satisfy the property that the
column space of Yk will always be equal to the column
space of Ȳk, (since C(XY ) = C(X) for any invertible
matrix Y , where C(X) denotes the column space of X).
That is, if we just care about computing the column space
of Yk, we can do it using the much simpler update rule
(4). Intuitively, we have transformed an optimization prob-
lem operating in the whole space Rn to one operating on
the Grassmannian manifold; one benefit of Alecton is that
we don’t have to work on the actual Grassmannian, but
get some of the same benefits from a rescaling of the Yk
space. In this specific case, the Alecton update rule is akin
to stochastic power iteration, since it involves a repeated
multiplication by the sample; this would not hold for opti-
mization on other manifolds.

We can use (4) to compute the column space (or “angu-
lar component”) of the solution, before then recovering the
rest of the solution (the “radial component”) using aver-
aging. Doing this corresponds to Algorithm 1, Alecton.
Notice that, unlike most iterative algorithms for matrix re-
covery, Alecton does not require any special initialization
phase and can be initialized randomly.

Analysis Analyzing this algorithm is challenging, as the
low-rank decomposition also introduces symmetrical fam-
ilies of fixed points. Not all these points are globally opti-
mal: in fact, a fixed point will occur whenever

Y Y T =
∑
i∈C

λiuiu
T
i
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Algorithm 1 Alecton: Solve stochastic matrix problem
Require: η ∈ R, K ∈ N, L ∈ N, and a sampling distribu-

tion A
. Angular component (eigenvector) estimation phase
Select Y0 uniformly in Rn×m s.t. Y T

0 Y0 = I .
for k = 0 to K − 1 do

Select Ãk uniformly and independently at random
from the sampling distribution A.
Yk+1 ← Yk + ηÃkYk

end for
Ŷ ← YK

(
Y T
K YK

)− 1
2

. Radial component (eigenvalue) estimation phase
R0 ← 0
for l = 0 to L− 1 do

Select Ãl uniformly and independently at random
from the sampling distribution A.
Rl+1 ← Rl + Ŷ T ÃlŶ

end for
R̄← RL/L

return Ŷ R̄
1
2

for any set C of size less than p.

One consequence of the non-optimal fixed points is that the
standard proof of SGD’s convergence, in which we choose
a Lyapunov function and show that this function’s expecta-
tion decreases with time, cannot work. If such a Lyapunov
function were to exist, it would show that no matter where
we initialize the iteration, convergence to a global optimum
will still occur rapidly; this cannot be possible due to the
presence of the non-optimal fixed points. Thus, a standard
statement of global convergence, that convergence occurs
uniformly regardless of initial condition, cannot hold.

We therefore use martingale-based methods to show con-
vergence. Specifically, our attack involves defining a
process xk with respect to the natural filtration Fk of
the iteration, such that xk is a supermartingale, that is
E [xk+1|Fk] ≤ xk. We then use the optional stopping
theorem (Fleming & Harrington, 1991) to bound both the
probability and rate of convergence of xk, from which we
derive convergence of the original algorithm. We describe
this analysis in the next section.

3. Convergence Analysis
First, we need a way to define convergence for the angular
phase. For most problems, we want C(Yk) to be as close as
possible to the span of u1, u2, . . . , up. However, for some
cases, this is not what we want. For example, consider the
case where p = 1 but λ1 = λ2. In this case, the algorithm
could not recover u1, since it is indistinguishable from u2.
Instead, it is reasonable to expect C(Yk) to converge to the
span of u1 and u2. To handle this case, we instead want

to measure convergence to the subspace spanned by some
number, q ≥ p, of the most significant eigenvectors (in
most cases, q = p). For a particular q, let U be the projec-
tion matrix onto the subspace spanned by u1, u2, . . . , uq ,
and define ∆, the eigengap, as ∆ = λq − λq+1. We now
let ε > 0 be an arbitrary tolerance, and define an angular
success condition for Alecton.

Definition 1. When running the angular phase of Alecton,
we define a quantity ρk to measure success, and say that
success has occurred at timestep k if

ρk = min
z∈Rp

‖UYkz‖2

‖Ykz‖2
≥ 1− ε.

This condition requires that all members of the column
space of Yk are close to the desired subspace. We say that
success has occurred by time t if success has occurred for
some timestep k < t. Otherwise, we say the algorithm has
failed, and we let Ft denote this failure event.

To prove convergence, we need to put some restrictions on
the problem. Our theorem requires the following three con-
ditions.

Condition 1 (Alecton Variance). A sampling distribution
A with expected value A satisfies the Alecton Variance
Condition (AVC) with parameters (σa, σr) if for any y ∈
Rn and for any symmetric matrix W � 0 that commutes
withA, if Ã is sampled fromA, the following bounds hold:

E
[
yT ÃTWÃy

]
≤ σ2

atr (W ) ‖y‖2

and

E

[(
yT Ãy

)2]
≤ σ2

r ‖y‖
4
.

In Section 4, we show several models that satisfy AVC.

Condition 2 (Alecton Rank). An instance of Alecton sat-
isfies the Alecton Rank Condition if either p = 1 (rank-1
recovery), or each sample Ã fromA is rank-1 (rank-1 sam-
pling).

Most of the noise models we analyze have rank-1 samples,
and so satisfy the rank condition.

Condition 3 (Alecton Step Size). Define γ as

γ =
2nσ2

ap
2(p+ ε)

∆ε
η.

This represents a constant step size parameter that is inde-
pendent of problem scaling. An instance of Alecton satis-
fies the Alecton Step Size Condition if γ ≤ 1.

Note that the step size condition is only an upper bound on
the step size. This means that, even if we do not know the
problem parameters exactly, we can still choose a feasible
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step size as long as we can bound them. (However, smaller
step sizes imply slower convergence, so it is a good idea to
choose η as large as possible.)

We will now define a useful function, then state our main
theorem that bounds the probability of failure.

Definition 2. For some p, let R ∈ Rp×p be a random ma-
trix the entries of which are independent standard normal
random variables. Define function Zp as

Zp(γ) = 2
(

1−E
[∣∣I + γp−1(RTR)−1

∣∣−1]) .
Theorem 1. Assume that we run an instance of Alecton
that satisfies the variance, rank, and step size conditions.
Then for any χ > 0, if we run for t timesteps where

t ≥ 4nσ2
ap

2(p+ ε)

∆2γε(χ− Zp(γ))
log

(
np2

γqε

)
, (5)

then the probability that the angular phase has not suc-
ceeded is P (Ft) ≤ χ. Also, after running for L steps in

the radial phase, for any constant ψ it holds that

P

(∥∥∥R̄− Ŷ TAŶ
∥∥∥2
F
≥ ψ

)
≤ p2σ2

r

Lψ
.

In particular, if σa∆−1 does not vary with n, this theo-
rem implies convergence of the angular phase with con-
stant probability after O(ε−1np3 log n) iterations and in
the same amount of time. Note that since we do not reuse
samples in Alecton, our rates do not differentiate between
sampling and computational complexity, unlike many other
algorithms (see Appendix B). We also do not consider nu-
merical error or overflow: periodically re-normalizing the
iterate may be necessary to prevent these in an implemen-
tation of Alecton. Note that if we initialized with the SVD
instead of randomly, we could afford to pick a larger value
of γ since we start nearer to the optimum; the algorithm
will therefore converge quicker.

Since the upper bound expression uses Zp, which is ob-
scure, we plot it here (Figure 1). We also can make a more
precise statement about the failure rate for p = 1.

Lemma 1. For the case of rank-1 recovery,

Z1(γ) =
√

2πγ exp
(γ

2

)
erfc

(√
γ

2

)
≤
√

2πγ.

3.1. Martingale Technique

A proof for Theorem 1 and full formal definitions will ap-
pear in the appendix of this document, but since the method
is nonstandard for non-convex optimization (although it has
been used in Shamir (2011) to show convergence for con-
vex problems), we will outline it here. First, we define a
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Figure 1. Value of Zp computed as average of 105 samples.

failure event fk at each timestep, that occurs if the iterate
gets “too close” to the unstable fixed points. Next, we de-
fine a sequence τk, where

τk =

∣∣Y T
k UYk

∣∣∣∣Y T
k (γn−1p−2qI + (1− γn−1p−2q)U)Yk

∣∣
(where |X| denotes the determinant of X); the intuition
here is that τk is close to 1 if and only if success occurs,
and close to 0 when failure occurs. We show that, for some
constant R, if neither success nor failure occurs at time k,

E [τk+1|Fk] ≥ τk (1 +R (1− τk)) ; (6)

here, Fk denotes the filtration at time k, which contains
all the events that have occurred up to time k (Fleming &
Harrington, 1991). If we let T denote the first time at which
either success or failure occurs, then this implies that τk is
a submartingale for k < T . We use the optional stopping
Theorem (Fleming & Harrington, 1991) (here we state a
discrete-time version).

Definition 3 (Stopping Time). A random variable T is a
stopping time with respect to a filtration Fk if {T ≤ k} ∈
Fk for all k. That is, we can tell whether T ≤ k using only
events that have occurred up to time k.

Theorem 2 (Optional Stopping Theorem). If xk is a mar-
tingale (or submartingale) with respect to a filtration Fk,
and T is a stopping time with respect to the same filtra-
tion, then xk∧T is also a martingale (resp. submartingale)
with respect to the same filtration, where k ∧ T denotes the
minimum of k and T . In particular, for bounded submartin-
gales, this implies that E [x0] ≤ E [xT ].

Applying this to the submartingale τk and time T results in

E [τ0] ≤ E [τT ]

= E [τT |FT ]P (fT ) + E [τT |¬FT ] (1− P (fT ))

≤ δP (fT ) + (1− P (fT )).
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This isolates the probability of the failure event occurring.
Next, we return to (6); subtracting 1 from both sides and
taking the logarithm results in

E [log (1− τk+1)|Fk] ≤ log(1− τk) + log (1−Rτk)

≤ log(1− τk)−Rδ.

So, if we let Wk = log(1− τk) +Rδk, then Wk is a super-
martingale. We again apply the optional stopping theorem
to produce

E [W0] ≥ E [WT ] = E [log(1− τT )] +RδE [T ] .

This isolates the expected value of the stopping time. Fi-
nally, we notice that success occurs before time t if T ≤ t
and fT does not occur. By the union bound, and Markov’s
inequality, this implies that

Pfailure ≤ P (fT ) + t−1E [T ] .

Substituting the isolated values for P (fT ) and E [T ] pro-
duces the result of Theorem 1.

The radial part of the theorem follows from an application
of Chebychev’s inequality to the average of L samples of
ŷT Ãŷ — we do not devote any discussion to it since aver-
ages are already well understood.

4. Application Examples
4.1. Entrywise Sampling

One sampling distribution that arises in many applica-
tions (most importantly, matrix completion (Candès &
Recht, 2009)) is entrywise sampling. This occurs when the
samples are independently chosen from the entries of A.
Specifically,

Ã = n2eie
T
i Aeje

T
j ,

where i and j are each independently drawn from 1, . . . , n.
It is standard for these types of problems to introduce a
matrix coherence bound (Jain et al., 2013).

Definition 4. A matrix A ∈ Rn×n is incoherent with pa-
rameter µ if and only if for every unit eigenvector ui of the
matrix, and for all standard basis vectors ej ,∣∣eTj ui∣∣ ≤ µn− 1

2 .

Under an incoherence assumption, we can provide a bound
on the second moment of Ã, which is all that we need to
apply Theorem 1 to this problem.

Lemma 2. If A is incoherent with parameter µ, and Ã is
sampled uniformly from the entries of A, then the distri-
bution of Ã satisfies the Alecton variance condition with
parameters σ2

a = µ4 ‖A‖2F and σ2
r = µ4tr (A)

2.

For problems in which the matrix A is of constant rank,
and its eigenvalues do not vary with n, neither ‖A‖F nor
tr (A) will vary with n. In this case, σ2

a, σ2
r , and ∆ will

be constants, and theO(ε−1n log n) bound on convergence
time will hold.

4.2. Rectangular Entrywise Sampling

Entrywise sampling also commonly appear in rectangular
matrix recovery problems. In these cases, we are trying to
solve something like

minimize ‖M −X‖2F
subject to X ∈ Rm×n, rank (X) ≤ p.

To solve this problem using Alecton, we first convert it into
a symmetric matrix problem by constructing the block ma-
trix

A =

[
0 M
MT 0

]
;

it is known that recovering the dominant eigenvectors of A
is equivalent to recovering the dominant singular vectors of
M .

Entrywise sampling on M corresponds to choosing a ran-
dom i ∈ 1, . . . ,m and j ∈ 1, . . . , n, and then sampling Ã
as

Ã = mnMij(eie
T
m+j + em+je

T
i ).

In the case where we can bound the entries of M (this is
natural for recommender systems), we can prove the fol-
lowing.
Lemma 3. If M ∈ Rm×n satisfies the entry bound

M2
ij ≤ ξm−1n−1 ‖M‖

2
F

for all i and j, then the rectangular entrywise sampling
distribution on M satisfies the Alecton variance condition
with parameters σ2

a = σ2
r = 2ξ ‖M‖2F .

As above, for problems in which the magnitude of the en-
tries of M is bounded and does not vary with problem size,
our big-O convergence time bound will still hold.

4.3. Trace Sampling

Another common sampling distribution arises from the ma-
trix sensing problem (Jain et al., 2013). In this problem,
we are given the value of vTAw for unit vectors v and w
selected uniformly at random. (Candès et al. (2014) han-
dle this problem for the more general complex case using
Wirtinger flow.) Using this, we can construct an unbiased
sample Ã = n2vvTAwwT ; this lets us bound the variance.
Lemma 4. If n > 50, and v and w are sampled uniformly
from the unit sphere in Rn, then for any positive semidef-
inite matrix A, if we let Ã = n2vvTAwwT , then the dis-
tribution of Ã satisfies the Alecton variance condition with
parameters σ2

a = 16 ‖A‖2F and σ2
r = 16tr (A)

2.
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If the eigenvalues of A do not vary with problem size, our
big-O convergence time bound will be the same.

In some cases of the trace sampling problem, instead of be-
ing given samples of the form uTAv, we know uTAu. In
this case, we need to use two independent samples uT1 Au1
and uT2 Au2, and let u ∝ u1 + u2 and v ∝ u1 − u2 be
two unit vectors which we will use in the above sampling
scheme. Notice that since u1 and u2 are independent and
uniformly distributed, u and v will also be independent and
uniformly distributed (by the spherical symmetry of the un-
derlying distribution). Furthermore, we can compute

uTAv = (u1 + u2)TA(u1 − u2) = uT1 Au1 − uT2 Au2.

This allows us to use our above trace sampling scheme even
with samples of the form uTAu.

4.4. Subspace Sampling

We now analyze the following more complicated distri-
bution, which arises in subspace tracking (Balzano et al.,
2010). Our matrixA is a rank-r projection matrix, and each
sample consists of some randomly-selected entries from a
randomly-selected vector in its column space. Specifically,
we are given Qv and Rv, where v is selected uniformly at
random from C(A), and Q and R are independent random
diagonal projection matrices with expected value mn−1I .
With this, we can construct the unbiased sample

Ã = rn2m−2QvvTR.

As in the entrywise case, we need to introduce a coherence
constraint to bound the second moment.
Definition 5. A subspace of Rn of dimension q with asso-
ciated projection matrix U is incoherent with parameter µ
if for all standard basis vectors ei, ‖Uei‖2 ≤ µrn−1.

Using this, we can prove the following facts about the sec-
ond moment of this distribution.
Lemma 5. The subspace sampling distribution, when sam-
pled from a subspace that is incoherent with parameter µ,
satisfies the Alecton variance condition with parameters
σ2
a = σ2

r = r2(1 + µrm−1)2.

Sometimes we are given just one random diagonal projec-
tion matrix S, and the product Sv. We can use this to con-
struct a sample of the above form by randomly splitting the
given entries among Q and R in such a way that Q = QS
and R = RS, and Q and R are independent. We can then
construct an unbiased sample Ã = rn2m−2QSvvTSR,
which uses only the entries of v that we are given.

4.5. Noisy Sampling

Since our analysis depends only on a variance bound, it
extends naturally to the case in which the values of our

Algorithm 2 Alecton One-at-a-time
Require: A sampling distribution A1

for i = 1 to p do
. Run rank-1 Alecton to produce output yi.
yi ← Alectonp=1(Ai)

Generate sampling distribution Ai+1 such that, if Ã′

is sampled from Ai+1 and Ã is sampled from Ai,
E
[
Ã′
]

= E
[
Ã
]
− yiyTi .

end for
return

∑p
i=1 yiy

T
i

samples themselves are noisy. Using the additive property
of the variance for independent random variables, we can
show that additive noise only increases the variance of the
sampling distribution by a constant amount proportional to
the variance of the noise. Similarly, using the multiplica-
tive property of the variance for independent random vari-
ables, multiplicative noise only multiplies the variance of
the sampling distribution by a constant factor proportional
to the variance of the noise. In either case, we can show
that the noisy sampling distribution satisfies AVC. Numer-
ical imprecision can also be modeled in the same way.

4.6. Extension to Higher Ranks

It is possible to use multiple iterations of the rank-1 version
of Alecton to recover additional eigenvalue/eigenvector
pairs of the data matrix A one-at-a-time. This is a standard
technique for using power iteration algorithms to recover
multiple eigenvalues. Sometimes, this may be preferable
to using a single higher-rank invocation of Alecton (for ex-
ample, we may not know a priori how many eigenvectors
we want). We outline this technique as Algorithm 2. If the
eigenvalues of A are independent of n and p, it will con-
verge in O(ε−1pn log n) total SGD update steps.

5. Experiments
We experimentally verify our main claim, that Alecton
does converge quickly for practical datasets. No data was
collected for the radial phase of Alecton, since the perfor-
mance of averaging is already well understood.

The first experiments were run on symmetric synthetic data
matrices A ∈ Rn×n each with ten random eigenvalues
λi > 0. Figure 2(a) illustrates the convergence of Alec-
ton with p = q = 1 using three sampling distributions on
datasets with n = 104. We ran Alecton starting from five
random initial values; the different plotted trajectories illus-
trate how convergence time can depend on the initial value.
Note that, due to the underlying symmetry of the quadratic
substitution, the multiple runs of the algorithm do not con-
verge to the same value of Y but rather X = Y Y T .
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Figure 2. Experiments ran on a single twelve-core machine (Intel Xeon E5-2697, 2.70GHz) with 256 GB of shared memory.

Figure 2(b) illustrates the performance of Alecton on a
larger dataset with n = 106 as the step size parameter η
is varied: a smaller value of η yields slower, but more ac-
curate convergence. Also, the smaller the value of η, the
more the initial value seems to affect convergence time.

Figure 2(c) shows convergence of a modified version of
Alecton in which the step size η is decreased over time
(proportional to 1/k): we converge to the global optimum,
rather than to a noise floor as in the constant-η case. Figure
2(d) shows the angular convergence time of Alecton on a
dataset with n = 104 as the rank of the model changes: the
convergence time increases as the rank increases. Figure
2(e) gives the angular convergence time of Alecton as the
dataset size changes. It illustrates the near-linear relation-
ship between dataset size and convergence time.

Figure 2(f) demonstrates convergence results on real data
from the Netflix Prize problem (Funk, 2006). This prob-
lem involves recovering a matrix with 480,189 columns
and 17,770 rows from a training dataset containing
110,198,805 revealed entries. We used the rectangular en-
trywise distribution described above, and ran Alecton One-
at-a-time to recover the twelve most significant singular
vectors of the matrix, using 107 iterations for each run of
Alecton. Each point in Figure 2(f) represents the absolute
runtime and RMS errors after the recovery of some number
of eigenvectors. This plot illustrates that the runtime of this

algorithm does not increase disastrously as the number of
recovered eigenvectors expands.

5.1. Future Work

The Hogwild! algorithm (Niu et al., 2011) is a parallel,
lock-free version of SGD that performs similarly to se-
quential SGD on convex problems. It is an open question
whether a Hogwild! version of Alecton converges with a
good rate, but we are optimistic that it will.

6. Conclusion
This paper exhibited Alecton, a stochastic gradient de-
scent algorithm applied to a non-convex low-rank factor-
ized problem; it is similar to the algorithms used in prac-
tice to solve a wide variety of problems. We prove that
Alecton converges globally, and provide a rate of conver-
gence. We do not require any special initialization step
but rather initialize randomly. Furthermore, our result de-
pends only on the variance of the samples, and therefore
holds under broad sampling conditions that include both
matrix completion and matrix sensing, and is also able to
take noisy samples into account. We show these results us-
ing a martingale-based technique that is novel in the space
of non-convex optimization, and we are optimistic that this
technique can be applied to other problems in the future.
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A. Negative Results
Divergence Example Here, we observe what happens
when we choose a constant step size for stochastic gradi-
ent descent for quartic objective functions. Consider the
simple optimization problem of minimizing

f(x) =
1

4
x4.

This function will have gradient descent update rule

xk+1 = xk − αkx
3
k =

(
1− αkx

2
k

)
xk.

We now prove that, for any reasonable step size rule chosen
independently of xk, there is some initial condition such
that this iteration diverges to infinity.

Proposition 1. Assume that we iterate using the above
rule, for some choice of αk that is not super-exponentially
decreasing; that is, for some C > 1 and some α > 0,
αk ≥ αC−2k for all k. Then, if x20 ≥ α−1(C + 1), for all
k

x2k > α−1C2k(C + 1).

Proof. We will prove this by induction. The base case fol-
lows directly from the assumption, while under the induc-
tive case, if the proposition is true for k, then

αkx
2
k ≥ αC−2kα−1C2k(C + 1) = C + 1.

Therefore,

x2k+1 =
(
αkx

2
k − 1

)2
x2k

≥ C2x2k
≥ C2α−1C2k(C + 1)

= α−1C2(k+1)(C + 1).

This proves the statement.

This proof shows that, for some choice of x0, xk will di-
verge to infinity exponentially quickly. Furthermore, no
reasonable choice of αk will be able to halt this increase
for all initial conditions. We can see the effect of this in
stochastic gradient descent as well, where there is always
some probability that, due to an unfortunate series of gra-
dient steps, we will enter the zone in which divergence oc-
curs. On the other hand, if we chose step size αk = γkx

−2
k ,

for some 0 < γk < 2, then

xk+1 = (1− γk)xk,

which converges for all starting values of xk. This simple
example is what motivates us to take ‖Yk‖ into account
when choosing the step size for Alecton.

Global Convergence Counterexample We now exhibit
a particular problem for which SGD on a low-rank factor-
ization doesn’t converge to the global optimum for a par-
ticular starting point. Let matrix A ∈ R2×2 be the diagonal
matrix with diagonal entries 4 and 1. Further, let’s assume
that we are trying to minimize the expected value of the
decomposed rank-1 objective function

f̃(y) =
∥∥∥Ã− yyT∥∥∥

F
= ‖y‖4 − 2yT Ãy +

∥∥∥Ã∥∥∥2
F
.

If our stochastic samples satisfy Ã = A (i.e. we use a
perfect sampler), then the SGD update rule is

yk+1 = yk − αk∇f̃(yk) = yk − 4αk

(
yk ‖yk‖2 −Ayk

)
.

Now, we know that e1 is the most significant eigenvector of
A, and that y = 2e1 is the global solution to the problem.
However,

eT1 yk+1 = eT1 yk − 4αk

(
eT1 yk ‖yk‖

2 − eT1 Ayk
)

=
(

1− 4αk

(
‖yk‖2 − 4

))
eT1 yk.

This implies that if eT1 y0 = 0, then eT1 yk = 0 for all k,
which means that convergence to the global optimum can-
not occur. This illustrates that global convergence does not
occur for all manifold optimization problems using a low-
rank factorization and for all starting points.

Constraints Counterexample We might think that our
results can be generalized to give O(n log n) convergence
of low-rank factorized problems with arbitrary constraints.
Here, we show that this will not work for all problems by
encoding an NP-complete problem as a constrained low-
rank optimization problem.

For any graph with node set N and edge set E, the MAX-
CUT problem on the graph requires us to solve

minimize
∑

(i,j)∈E yiyj
subject to yi ∈ {−1, 1}.

Equivalently, if we let A denote the edge-matrix of the
graph, we can represent this as a matrix problem (Homer
& Peinado, 1997; Goemans & Williamson, 1995)

minimize yTAy
subject to yi ∈ {−1, 1}.

We relax this problem to

minimize yTAy
subject to −1 ≤ yi ≤ 1.

Since the diagonal of A is zero, if we fix all but one of
the entries of y, the objective function will have an affine
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dependence on that entry. In particular, this means that a
global minimum of the problem must occur on the bound-
ary where yi ∈ {−1, 1}, which implies that this prob-
lem has the same global solution as the original MAXCUT
problem. Furthermore, for sufficiently large values of σ,
the problem

minimize ‖y‖4 + 2σyTAy + σ2 ‖A‖2F
subject to −1 ≤ yi ≤ 1

will also have the same solution. But, this problem is in the
same form as a low-rank factorization of

minimize ‖X + σA‖2F
subject to Xii ≤ 1, X � 0, rank (X) = 1

whereX = yyT . Since MAXCUT is NP-complete, it can’t
possibly be the case that SGD applied to this low-rank fac-
torized problem converges quickly to the global optimum,
because that would imply an efficient solution to this NP-
complete problem. This suggests that care will be needed
when analyzing problems with constraints, in order to ex-
clude these sorts of cases.

B. Comparison with Other Methods
There are several other algorithms that solve similar matrix
recover problems in the literature. In Table B, we list some
other algorithms, and their convergence rates, in terms of
both number of samples required (sampling complexity)
and number of iterations performed (computational com-
plexity). For this table, the data is assumed to be of dimen-
sion n, and the rank (where applicable) is assumed to be
p. (In order to save space, factors of log log ε−1 have been
omitted from some formulas.)

C. Proofs of Main Results
In this appendix, we provide rigorous definitions and detail
the proof outlined in Section 3.1.

C.1. Definitions

Fleming & Harrington (1991) provide the following defini-
tions of filtration and martingale. We state the definitions
adapted to the discrete-time case.

Definition 6 (Filtration). Given a measurable probability
space (Ω,F), a filtration is a sequence of sub-σ-algebras
{Ft} for t ≥ 0, such that for all s ≤ t,

Fs ⊂ Ft.

That is, if an event A is in Fs, and t ≥ s, then A is also
in Ft. This definition encodes the monotonic increase in
available information over time.

Definition 7 (Martingale). Let {Xt} be a stochastic pro-
cess and {Ft} be a filtration over the same probability
space. Then X is called a martingale with respect to the
filtration if for every t, Xt is Ft-measurable, and

E [Xt+1|Ft] = Xt. (7)

We call X a submartingale if the same conditions hold,
except (7) is replaced with

E [Xt+1|Ft] ≥ Xt.

We call X a supermartingale if the same conditions hold,
except (7) is replaced with

E [Xt+1|Ft] ≤ Xt.

C.2. Preliminaries

In addition to the quantities used in the statement of Theo-
rem 1, we let

W = γn−1p−2qI + (1− γn−1p−2q)U,

and define sequences τk and φk as

τk =

∣∣Y T
k UYk

∣∣∣∣Y T
k WYk

∣∣ ,
and

φk = tr
(
I − Y T

k UYk
(
Y T
k WYk

)−1)
.

This agrees with the definition of τk stated in the body of
the paper. Using this sequence, we define the failure event
fk as the event that occurs when

τk ≤
1

2
. (8)

We recall that we defined the success event at time k as the
event that, for all z ∈ Rp,

‖UYkz‖2

‖Ykz‖2
≥ 1− ε.

Finally, we define T , the stopping time, to be the first time
at which either the success event or the failure event occurs.

Now, we state some lemmas we will need in the following
proofs. We defer proofs of the lemmas themselves to Ap-
pendix D. First, we state a lemma about quadratic rational
functions that we will need in the next section.

Lemma 6 (Quadratic rational lower bound). For any a, b,
c, and d in R, if 1 + by + cy2 > 0 and 1 + ay + dy2 ≥ 0
for all y, then for all x ∈ R,

1 + ax+ dx2

1 + bx+ cx2
≥ 1 + (a− b)x− cx2.
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Algorithm Sampling Scheme Complexity

Sampling Computational

Alecton Any O(ε−1p3n log n)

SVD Various o(pn) O(n3)

Spectral Matrix Completion (Keshavan et al., 2010) Elementwise o(pn) O(p2n log n)

PhaseLift (Candès & Li, 2014) Phase Retrieval o(n) O(ε−1n3)

Alternating Minimization (Netrapalli et al., 2013) Phase Retrieval o(n log(ε−1)) O(n2 log2(ε−1))

Wirtinger Flow (Candès et al., 2014) Phase Retrieval o(n log2 n) O(pn log(ε−1))

Next, a lemma about the expected initial value of τ :

Lemma 7. If we initialize Y0 uniformly as in the Alecton
algorithm, then

E [τ0] ≥ 1− 1

2
Zp(γ).

Next, a lemmas that bounds a determinant expression.

Lemma 8. For any B ∈ Rn×n, Y ∈ Rn×m, and any
symmetric positive-semidefinite Z ∈ Rn×n, if either B is
rank-1 or m = 1, then∣∣Y T (I +B)TZ(I +B)Y

∣∣
≥
∣∣Y TZY

∣∣ (tr (Y (Y TZY )−1Y TZB
)

+ 1
)2

and ∣∣Y T (I +B)TZ(I +B)Y
∣∣

≤
∣∣Y TZY

∣∣ (1 + 2tr
(
Y (Y TZY )−1Y TZB

)
+ tr

(
Y (Y TZY )−1Y TBTZB

) )
.

Next, a lemma that bounds τ in the case that the success
condition does not occur.

Lemma 9. If we run Alecton, and at timestep k, the success
condition does not hold, then

τk ≤ 1− γn−1p−2qε.

Finally, a lemma that relates φ and τ .

Lemma 10. Using the definitions above, for all k,

φk ≥ 1− τk.

C.3. Main Proofs

We now proceed to prove Theorem 1 in six steps, as out-
lined in Section 3.1.

• First, we prove Lemma 11, the dominant mass bound
lemma, which bounds E [τk+1|Fk] from below by a
quadratic function of the step size η.

• We use this to prove Lemma 12, which establishes the
result stated in (6).

• We use the optional stopping theorem to prove Lemma
13, which bounds the probability of a failure event oc-
curring before success.

• We use the optional stopping theorem again to prove
Lemma 14, which bounds the expected time until ei-
ther a failure or success event occurs.

• We use Markov’s inequality and the union bound to
bound the angular failure probability of Theorem 1.

• Finally, we prove the radial phase result stated in The-
orem 1.

Lemma 11 (Dominant Mass Bound). If we run Alecton
under the conditions of Theorem 1, then for any k,

E [τk+1|Fk] ≥ τk
(

1 + 2η
(
∆− ησ2

aγ
−1np2

)
(1− τk)

− η2σ2
ap(q + 1)

)
.

Proof. From the definition of τ , at the next timestep we
will have

τk+1 =

∣∣Y T
k+1UYk+1

∣∣∣∣Y T
k+1WYk+1

∣∣
=

∣∣∣∣Y T
k

(
I + ηÃk

)T
U
(
I + ηÃk

)
Yk

∣∣∣∣∣∣∣∣Y T
k

(
I + ηÃk

)T
W
(
I + ηÃk

)
Yk

∣∣∣∣ .
Note that the denominator of this expression will be non-
negative since it is the determinant of a positive semidefi-
nite matrix (because W � 0, it follows that Y TWY � 0).
Now, since our instance of Alecton satisfies the rank con-
dition, either Ãk is rank-1 or p = 1. Therefore, we
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can apply Lemma 8 to these determinant quantities. In
order to produce a lower bound on τk+1, we will apply
lower bound to the numerator and the upper bound to the
denominator. If we let Bk = Yk(Y T

k UYk)−1Y T
k , and

Ck = Yk(Y T
k WYk)−1Y T

k , then this results in

τk+1 ≥
∣∣Y T

k UYk
∣∣∣∣Y T

k WYk
∣∣

·

(
1 + ηtr

(
BkUÃk

))2
1 + 2ηtr

(
CkWÃk

)
+ η2tr

(
CkÃT

kWÃk

) .
Notice that the denominator of this expression must be non-
negative, because it is an upper bound of the denominator
of the expression above, which we noted was nonnegative.
Therefore, we can apply Lemma 6, which results in

τk+1 ≥ τk
(

1 + 2η
(
tr
(
BkUÃk

)
− tr

(
CkWÃk

))
− η2tr

(
CkÃ

T
kWÃk

))
= τk

(
1 + 2ηRk − η2Qk

)
,

for sequences Rk and Qk. Now, we investigate the ex-
pected values of these sequences. First, since the estimator
has E

[
Ãk

∣∣∣Fk

]
= A, the expected value of Rk is

E [Rk|Fk] = tr (BkUA)− tr (CkWA)

= tr ((Bk − Ck)UA)

− γn−1p−2qtr (Ck(I − U)A) .

Now, since U commutes with A, we will have that

UA � λqU,

and similarly

(I − U)A � λq+1(I − U).

Applying this results in

E [Rk|Fk] = tr (BkUA)− tr (CkWA)

≥ λqtr ((Bk − Ck)U)

− λq+1γn
−1p−2qtr (Ck(I − U)) .

Now, we first notice that

tr ((Bk − Ck)U) = tr
(
I − YkUY T

k (Y T
k WYk)−1

)
= φk.

We also notice that

γn−1p−2qtr (Ck(I − U)) = tr (Ck(W − U))

= tr
(
I − YkUY T

k (Y T
k WYk)−1

)
= φk.

It therefore follows that

E [Rk|Fk] ≥ (λq − λq+1)φk

= ∆φk.

Next, the expected value of Qk is

E [Qk|Fk] = tr
(
CkE

[
ÃT

kWÃk

])
.

Since our instance of Alecton satisfies the variance condi-
tion, and W commutes with A,

E [Qk|Fk] ≤ σ2
atr (W ) tr (Ck) .

We notice that

tr (Ck) = tr
(
Ck

(
W + (1− γn−1p−2q)(I − U)

))
= p+ (1− γn−1p−2q)tr (Ck(I − U))

≤ p+ tr (Ck(I − U)) .

By the logic above,

tr (Ck) ≤ p+ γ−1np2q−1φk.

Also,

tr (W ) = tr
(
γn−1p−2qI + (1− γn−1p−2q)U

)
= γp−2q + q − γn−1p−2q2

≤ q + 1

and therefore, since tr (W ) ≤ q + 1,

E [Qk|Fk] ≤ σ2
a(q + 1)

(
p+ γ−1np2q−1φk

)
.

Substituting these in results in

E [τk+1|Fk] ≥ τk
(
1 + 2η∆φk − η2

(
σ2
ap(q + 1)

+ σ2
aγ
−1np2(q + 1)q−1φk

))
= τk

(
1+η

(
2∆−ησ2

aγ
−1np2(q+1)q−1

)
φk

− η2σ2
ap(q + 1)

)
≥ τk

(
1 + 2η

(
∆− ησ2

aγ
−1np2

)
φk

− η2σ2
ap(q + 1)

)
.

Finally, since for our chosen value of γ,

∆ > ησ2
aγ
−1np2,

we can apply Lemma 10, which produces

E [τk+1|Fk] ≥ τk
(

1 + 2η
(
∆− ησ2

aγ
−1np2

)
(1− τk)

− η2σ2
ap(q + 1)

)
.

This is the desired expression.
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Lemma 12. If we run Alecton under the conditions of The-
orem 1, then for any time k at which neither the success
event nor the failure event occur,

E [τk+1|Fk] ≥ τk (1 + η∆(1− τk)) .

Proof. From the result of Lemma 11,

E [τk+1|Fk] ≥ τk
(
1 + 2η

(
∆− ησ2

aγ
−1np2

)
(1− τk)

− η2σ2
ap(q + 1)

)
= τk

(
1 + η∆(1− τk)

+ η
(
∆− 2ησ2

aγ
−1np2

)
(1− τk)

− η2σ2
ap(q + 1)

)
= τk (1 + η∆(1− τk) + ηSk, )

for sequence Sk. Now, it can be easily verified that we
chose γ such that

∆ ≥ 2ησ2
aγ
−1np2,

and so it follows that, by Lemma 9,

Sk =
(
∆− 2ησ2

aγ
−1np2

)
(1− τk)− ησ2

ap(q + 1)

≥
(
∆− 2ησ2

aγ
−1np2

)
γn−1p−2qε− ησ2

ap(q + 1)

= ∆γn−1p−2qε− 2ησ2
aqε− ησ2

ap(q + 1)

≥ ∆γn−1p−2qε− 2ησ2
aq(p+ ε).

If we substitute the value of γ,

γ =
2nσ2

ap
2(p+ ε)

∆ε
η.

then we arrive at
Sk ≥ 0.

Substituting this in to our original expression produces

E [τk+1|Fk] ≥ τk (1 + η∆(1− τk)) ,

as desired.

Lemma 13 (Failure Probability Bound). If we run Alecton
under the conditions of Theorem 1, then the probability that
the failure event will occur before the success event is

P (fT ) ≤ Zp(γ).

Proof. To prove this, we use the stopping time T , which we
defined as the first time at which either the success event
or failure event occurs. First, if k < T , it follows that
neither success nor failure have occurred yet, so we can
apply Lemma 12, which results in

E [τk+1|Fk] ≥ τk (1 + η∆(1− τk)) .

Therefore τk is a supermartingale for k < T . So, we can
apply the optional stopping theorem, which produces

E [τ0] ≤ E [τT ] .

So, by the law of total expectation,

E [τ0] ≤ E [τT |fT ]P (fT ) + E [τT |¬fT ]P (¬fT ) ,

where fT is the failure event at time T . Applying the defi-
nition of the failure event from (8),

E [τ0] ≤ 1

2
P (fT ) + 1

(
1− P (fT )

)
.

Therefore, solving for P (fT ),

P (fT ) ≤ 2 (1−E [τ0]) .

Now applying Lemma 7,

P (fT ) ≤ 2

(
1−

(
1− 1

2
Zp(γ)

))
= Zp(γ),

as desired.

Lemma 14 (Stopping Time Expectation). If we run Alec-
ton under the conditions of Theorem 1, then the expected
value of the stopping time T will be

E [T ] ≤ 4nσ2
ap

2(p+ ε)

∆2γε
log

(
np2

γqε

)
.

Proof. First, as above if k < T , we can apply Lemma 12,
which results in

E [τk+1|Fk] ≥ τk (1 + η∆ (1− τk))

= τk + η∆τk (1− τk) ,

and so

E [1− τk+1|Fk] ≤ (1− τk) (1− η∆τk) .

Now, if k < T , then since failure hasn’t occurred yet, τk >
1
2 . So,

E [1− τk+1|Fk] ≤ (1− τk)

(
1− 1

2
η∆

)
.

Now, since the logarithm function is concave, by Jensen’s
inequality we have

E [log (1− τk+1)|Fk] ≤ logE [1− τk+1|Fk] ,

and thus by transitivity,

E [log (1− τk+1)|Fk] ≤ log(1− τk) + log

(
1− 1

2
η∆

)
≤ log(1− τk)− 1

2
η∆.
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Now, we define a new process ψk as

ψk = log(1− τk) +
1

2
η∆k.

Using this definition, for k < T ,

E [ψk+1|Fk] = E [log(1− τk+1)|Fk] +
1

2
η∆(k + 1)

≤ log(1− τk)− 1

2
η∆ +

1

2
η∆(k + 1)

= log(1− τk) +
1

2
η∆k

= ψk,

so ψk is a supermartingale for k < T . We can therefore
apply the optional stopping theorem, which states that

E [log(1− τ0)] = E [ψ0] ≥ E [ψT ] .

Since 1−τ0 < 1, it follows that log(1−τ0) < 0. Therefore,

0 ≥ E [ψT ] = E [log(1− τT )] +
1

2
η∆E [T ] .

Applying Lemma 9,

1− τT ≥ γn−1p−2qε,

and so

0 ≥ log(γn−1p−2qε) +
1

2
η∆E [T ] .

Solving for the expected value of the stopping time,

E [T ] ≤ 2

η∆δ
log

(
np2

γqε

)
.

Finally, substituting η in terms of γ results in

E [T ] ≤ 4nσ2
ap

2(p+ ε)

∆2γε
log

(
np2

γqε

)
,

as desired.

Finally, we prove Theorem 1.

Proof of angular part of Theorem 1. First, we notice that
the total failure event up to time t can be written as

Ft = fT ∪ {T > t} .

That is, total failure up to time t occurs if either failure
happens before success (event fT ), or neither success nor
failure happen before t. By the union bound,

Ft ≤ P (fT ) + P (T > t) .

Applying Markov’s inequality,

P (Ft) ≤ P (fT ) +
1

t
E [T ] .

Finally, applying Lemmas 13 and 14 produces

P (Ft) ≤ Zp(γ) +
4nσ2

ap
2(p+ ε)

∆2γεt
log

(
np2

γqε

)
.

This is the desired expression.

Proof of radial part of Theorem 1. Recall that in Alecton,
R̄ is defined as

R̄ =
1

L

L−1∑
l=0

Ŷ T ÃlŶ .

Now, computing the expected distance to the mean,

E

[∥∥∥R̄− Ŷ TAŶ
∥∥∥2
F

]

= E

∥∥∥∥∥ 1

L

L−1∑
l=0

Ŷ T ÃlŶ − Ŷ TAŶ

∥∥∥∥∥
2

F


= E

∥∥∥∥∥ 1

L

L−1∑
l=0

Ŷ T (Ãl −A)Ŷ

∥∥∥∥∥
2

F


=

1

L2
E

[
L−1∑
k=0

L−1∑
l=0

tr
(
Ŷ T (Ãk −A)T Ŷ Ŷ T (Ãl −A)Ŷ

)]

Since E
[
Ã
]

= A, and the Ãl are independently sampled,
the summand here will be zero unless k = l. Therefore,

E

[∥∥∥R̄− Ŷ TAŶ
∥∥∥2
F

]
=

1

L2

L−1∑
l=0

E
[
tr
(
Ŷ T (Ãl −A)T Ŷ Ŷ T (Ãl −A)Ŷ

)]
=

1

L
E
[
tr
(
Ŷ T (Ã−A)T Ŷ Ŷ T (Ã−A)Ŷ

)]
≤ 1

L
E
[
tr
(
Ŷ T ÃT Ŷ Ŷ T ÃŶ

)]
.

Applying the Alecton variance condition, and recalling that
tr
(
Ŷ Ŷ T

)
= p, results in

E

[∥∥∥R̄− Ŷ TAŶ
∥∥∥2
F

]
≤ p2σ2

r

L
.

We can now apply Markov’s inequality to this expression.
This results in, for any constant ψ > 0,

P

(∥∥∥R̄− Ŷ TAŶ
∥∥∥2
F
≥ ψ

)
≤ p2σ2

r

Lψ
,

which is the desired result.
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D. Proofs of Lemmas
First, we prove the lemmas used above to demonstrate the
general result.

Proof of quadratic rational lower bound lemma (Lemma 6).
Expanding the product results in

(
1 + bx+ cx2

) (
1 + (2a− b)x− cx2

)
= 1 + ((2a− b) + b)x+ (c− c+ (2a− b)b)x2

+ ((2a− b)c− bc)x3 − c2x4

= 1 + 2ax+ (2ab− b2)x2 + 2(a− b)cx3 − c2x4

= 1 + 2ax+ a2x2 − (a2 − 2ab+ b2)x2

+ 2(a− b)cx3 − c2x4

= 1 + 2ax+ a2x2 − x2
(
(a− b)2 − 2(a− b)cx+ c2x2

)
= (1 + ax)2 − x2((a− b)− cx)2

≤ (1 + ax)2.

Dividing both sides by 1 + bx + cx2 (which we can do
since this is assumed to be positive) reconstructs the desired
identity.

Proof of Lemma 7. We first note that, by the symmetry of
the multivariate Gaussian distribution, initializing Y0 uni-
formly at random such that Y T

0 Y0 = I is equivalent to ini-
tializing the entries of Y0 as independent standard normal
random variables, for the purposes of computing τ0. Under
this initialization strategy, E [τ0] is

E [τ0] = E

[ ∣∣Y T
0 UY0

∣∣∣∣Y T
0 WY0

∣∣
]

= E

[ ∣∣Y T
0 UY0

∣∣∣∣γn−1p−2qY T
0 (I − U)Y0 + Y T

0 UY0
∣∣
]
.

Now, let X ∈ Rq×p be the component of Y0 that is in the
column space of U , and let Z ∈ R(n−q)×p be the compo-
nent of Y0 in the null space of U . Then,

E [τ0] = E

[ ∣∣XTX
∣∣

|γn−1p−2qZTZ +XTX|

]
.

Since X and Z are selected orthogonally from a Gaussian
random matrix, they must be independent, so we can take
their expected values independently. Taking the expected
value first with respect to Z, we notice that |V |−1 is a con-

vex function in V , and so by Jensen’s inequality,

E [τ0] ≥ E

[ ∣∣XTX
∣∣

|γn−1p−2qE [ZTZ] +XTX|

]

≥ E

[ ∣∣XTX
∣∣

|γn−1p−2q(n− q)I +XTX|

]

≥ E

[ ∣∣XTX
∣∣

|γp−2qI +XTX|

]
= E

[∣∣I + γp−2q(XTX)−1
∣∣−1] .

Now, let V ∈ Rq×p be a random full-rank projection ma-
trix, selected independently of X . Then,

E
[
V V T

]
=
p

q
I,

and so

E [τ0] ≥ E

[∣∣∣I + γp−1E
[
XTV V TX

∣∣X]−1∣∣∣−1] .
Applying Jensen’s inequality again,

E [τ0] ≥ E

[
E

[∣∣∣I + γp−1
(
XTV V TX

)−1∣∣∣−1∣∣∣∣X]] .
and by the law of total expectation,

E [τ0] ≥ E

[∣∣∣I + γp−1
(
XTV V TX

)−1∣∣∣−1] .
Now, since V and X were sampled independently, it fol-
lows that V TX is sampled as a standard normal random
matrix in Rp×p. If we call this matrix R, then

E [τ0] ≥ E

[∣∣∣I + γp−1
(
RTR

)−1∣∣∣−1]
= 1− 1

2
Zp(γ),

as desired.

Lemma 15. For any B ∈ Rn×n, any Y ∈ Rn×m, and any
symmetric positive- semidefinite Z ∈ Rn×n, if either B is
rank-1 or m = 1, then∣∣Y T (I +B)TZ(I +B)Y

∣∣
=
∣∣Y TZY

∣∣ ( (tr (Y (Y TZY )−1Y TZB
)

+ 1
)2

+ tr
(
Y (Y TZY )−1Y TBTZB

)
− tr

(
ZY (Y TZY )−1Y TZBY (Y TZY )−1Y TBT

) )
.
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Proof. We will prove this separately for each case. First,
if m = 1, then Y is a vector, and the desired expression
simplifies to

Y T (I +B)TZ(I +B)Y

= Y TZY
(
(Y TZY )−1Y TZBY + 1

)2
+ tr

(
Y TBTZBY

)
− (Y TZY )−1(Y TZBY )2.

Straightforward evaluation indicates that this expression
holds in this case.

Next, we consider the case where B is rank-1. In this case,
we can rewrite it as B = uvT for vectors u and v, such that
uTZu = 1. Then,∣∣Y T (I +B)TZ(I +B)Y

∣∣
=
∣∣Y T (I + uvT )TZ(I + uvT )Y

∣∣
=
∣∣Y TZY + 2Y TZuvTY + Y T vvTY

∣∣
If we define M = Y TZY and

W =
[
Y TZu Y T v

]
,

then ∣∣Y T (I +B)TZ(I +B)Y
∣∣

=

∣∣∣∣M +W

[
0 1
1 1

]
WT

∣∣∣∣ .
Applying the matrix determinant lemma, and recalling that[

0 1
1 1

]−1
=

[
−1 1
1 0

]
and ∣∣∣∣ 0 1

1 1

∣∣∣∣ = −1,

we produce

− detM−1
∣∣Y T (I +B)TZ(I +B)Y

∣∣
= −

∣∣∣∣[ −1 1
1 0

]
+WTM−1W

∣∣∣∣
=

∣∣∣∣ uTZYM−1Y TZu− 1 vTYM−1Y TZu+ 1
vTYM−1Y TZu+ 1 vTYM−1Y T v

∣∣∣∣
=
(
uTZYM−1Y TZu− 1

) (
vTYM−1Y T v

)
−
(
vTYM−1Y TZu+ 1

)2
= uTZYM−1Y TZuvTYM−1Y T v

− vTYM−1Y T vuTZu

−
(
vTYM−1Y TZu+ 1

)2
.

Rewriting this in terms of the matrix B = uvT ,

− detM−1
∣∣Y T (I +B)TZ(I +B)Y

∣∣
= tr

(
ZYM−1Y TZBYM−1Y TBT

)
− tr

(
YM−1Y TBTZB

)
−
(
tr
(
YM−1Y TZB

)
+ 1
)2
.

Substitution produces the desired result.

Proof of Lemma 8. First, for the lower bound, we notice
that

ZY (Y TZY )−1Y TZ � Z,

since the interior of the left expression is a projection ma-
trix. This lets us conclude that

tr
(
Y (Y TZY )−1Y TBTZB

)
≥ tr

(
ZY (Y TZY )−1Y TZBY (Y TZY )−1Y TBT

)
.

Applying this to the result of Lemma 15 produces the de-
sired lower bound.

For the upper bound, recall that, by the Cauchy-Schwarz
inequality, for any rank-1 matrix A,

tr (A)
2 ≤ tr

(
ATA

)
.

Since B is rank-1, it follows that

tr
(
Y (Y TZY )−1Y TZB

)2
≤ tr

(
ZY (Y TZY )−1Y TZBY (Y TZY )−1Y TBT

)
.

Applying this to the result of Lemma 15 produces the de-
sired upper bound.

Lemma 16. For any symmetric matrix 0 � X � I ,

tr (I −X) ≥ 1− |X| .

Proof. If x1, x2, . . . , xp are the eigenvalues of x, then this
statement is equivalent to(

p∑
i=1

(1− xi)

)
−

(
1−

p∏
i=1

xi

)
> 0.

If we let f(X) denote this expression, then

∂f

∂xj
= −1 +

1

xj

p∏
i=1

xi ≤ 0.

It follows that the minimum of f is attained at X = I .
However, when X = I , f(X) = 0, and so f > 0, which
proves the lemma.
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Proof of Lemma 10. From the definition of φk, if we let
Z2 =

(
Y T
k WYk

)−1
for Z positive semidefinite, then

φk = tr
(
I − Y T

k U
TUYk

(
Y T
k WYk

)−1)
= tr

(
I − ZY T

k U
TUYkZ

)
.

Since 0 � ZY T
k U

TUYkZ � I , we can apply Lemma 16,
which produces

φk ≥ 1−
∣∣ZY T

k U
TUYkZ

∣∣
= 1−

∣∣Y T
k U

TUYk
∣∣∣∣Y T

k WYk
∣∣

= 1− τk,

which is the desired expression.

Proof of Lemma 9. Since the success event does not occur,
it follows that there exists a z ∈ Rp such that

‖UYkz‖2

‖Ykz‖2
≤ 1− ε.

If we let

Ŷk = Yk
(
Y T
k Yk

)− 1
2 ,

and define ẑ as the unit vector such that

ẑ ∝
(
Y T
k Yk

) 1
2 z,

then we can rewrite this as∥∥∥UŶkẑ∥∥∥2 ≤ 1− ε.

It follows that Ŷ T
k UŶk has an eigenvalues less than 1− ε.

Now, expanding τk,

τk =

∣∣Y T
k UYk

∣∣∣∣Y T
k WYk

∣∣
=

∣∣∣Ŷ T
k UŶk

∣∣∣∣∣∣Ŷ T
k WŶk

∣∣∣
=

∣∣∣∣(1− γn−1p−2q)I + γn−1p−2q
(
Ŷ T
k UŶk

)−1∣∣∣∣−1

Since this is a matrix that has eigenvalues between 0 and 1,
it follows that its determinant is less than each of its eigen-
values. From the analysis above, we can bound one of the

eigenvalues of this matrix. Doing this results in

τk ≤
(

(1− γn−1p−2q) + γn−1p−2q (1− ε)−1
)−1

=
1− ε

γn−1p−2q + (1− γn−1p−2q)(1− ε)

= 1− γn−1p−2qε

γn−1p−2q + (1− γn−1p−2q)(1− ε)
≤ 1− γn−1p−2qε,

as desired.

Lemma 17. Let x be a standard normal random variable,
and a ∈ R a constant. Then

E

[
a2

x2 + a2

]
= exp

(
a2

2

)√
πa2

2
erfc

(√
a2

2

)
.

Proof. By the definition of expected value, since x is nor-
mally distributed,

E

[
a2

x2 + a2

]
=

∫ ∞
−∞

(
a2

x2 + a2

)(
1√
2π

exp

(
−x

2

2

))
dx.

If we let F denote the fourier transform, then

F
[

a

x2 + a2

]
=
√

2π exp (−a |ω|) .

Furthermore, since the Gaussian functions are eigenfunc-
tions of the Fourier transform, we know that

F
[

1√
2π

exp

(
−x

2

2

)]
=

1√
2π

exp

(
−ω

2

2

)
.

And so, by Parseval’s theorem,

E

[
1

x2 + 1

]
= a

∫ ∞
−∞
F
[

a

x2 + a2

]
F
[

1√
2π

exp

(
−x

2

2

)]
dω

= a

∫ ∞
−∞

√
2π exp (−a |ω|)

(
1√
2π

exp

(
−ω

2

2

))
dω

= a

∫ ∞
0

exp

(
−aω − ω2

2

)
dω

= a exp

(
a2

2

)∫ ∞
0

exp

(
−a

2

2
− aω − ω2

2

)
dω.

Letting u = ω+a√
2

and dω =
√

2du, so

E

[
1

x2 + 1

]
= a exp

(
a2

2

)∫ ∞
a√
2

exp
(
−u2

)√
2du

= exp

(
a2

2

)√
πa2

2
erfc

(√
a2

2

)
,
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as desired.

Proof of Lemma 1. We start by stating the definition of
Z1(γ). For some Gaussian random matrix R ∈ R1×1,

Z1(γ) = 2
(

1−E
[∣∣I + γ(RTR)−1

∣∣−1]) .
Since R is a scalar, this reduces to

Z1(γ) = 2
(

1−E
[(

1 + γR−2
)−1])

= E

[
2

(
1− 1

1 + γR−2

)]
= E

[
2

γR−2

1 + γR−2

]
= 2E

[(
γ

R2 + γ

)]
.

Applying Lemma 17,

Z1(γ) = 2 exp
(γ

2

)√πγ

2
erfc

(√
γ

2

)
=
√

2πγ exp
(γ

2

)
erfc

(√
γ

2

)
.

This is the desired expression. Furthermore, since for all x,

erfc
(√
x
)
≤ exp (x) ,

we can also produce the desired upper bound on Z1,

Z1 ≤
√

2πγ.

D.1. Proofs of Alecton Variance Condition Lemmas

Next, we prove the Alecton Variance Conditions lemmas
for the distributions mentioned in the body of the paper.

D.1.1. ENTRYWISE SAMPLING

To analyze the entrywise sampling case, we need some
lemmas that makes the incoherence condition more acces-
sible.

Lemma 18. If matrix A is symmetric and incoherent with
parameter µ, and B is a symmetric matrix that commutes
with A, then B is incoherent with parameter µ.

Proof. Since A and B commute, they must have the same
eigenvectors. Therefore, the set of eigenvectors that shows
that A is incoherent with parameter µ will also show that
B has the same property.

Lemma 19. If matrix A is symmetric and incoherent with
parameter µ, and ei is a standard basis element, then

eTi Aei ≤
µ2

n
tr (A) .

Proof. Let u1, u2, . . . , un be the eigenvectors guaranteed
by the incoherence of A, and let λ1, . . . , λn be the corre-
sponding eigenvalues. Then,

eTi Aei = eTi

 n∑
j=1

ujλju
T
j

 ei

=

n∑
j=1

ujλj(e
T
i uj)

2.

Applying the definition of incoherence,

eTi Aei ≤
n∑

j=1

ujλj

(
µ√
n

)2

=
µ2

n
tr (A) ,

as desired.

Proof of the σa bound part of Lemma 2. We recall that the
entrywise samples are of the form

Ã = n2uuTAvvT ,

where u and v are independently, uniformly chosen stan-
dard basis elements. We further recall that E

[
uuT

]
=

E
[
vvT

]
= n−1I . Now, evaluating the desired quantity,

E
[
yT ÃTWÃy

]
= n4E

[
yT vvTAuuTWuuTAvvT y

]
.

Since W commutes with A, by Lemmas 18 and 19,
uTWu ≤ µ2n−1tr (W ). Therefore,

E
[
yT ÃTWÃy

]
≤ µ2n3tr (W )E

[
yT vvTAuuTAvvT y

]
= µ2n2tr (W )E

[
yT vvTA2vvT y

]
.

Since A2 commutes with A, the same logic shows that
vTA2v ≤ µ2n−1tr

(
A2
)
, and so,

E
[
yT ÃTWÃy

]
≤ µ4ntr (W ) tr

(
A2
)
E
[
yT vvT y

]
= µ4tr (W ) ‖A‖2F ‖y‖

2
.

So it suffices to choose σ2
a = µ4 ‖A‖2F , as desired.

Proof of the σr bound part of Lemma 2. Evaluating the
desired quantity,

E

[(
yT Ãy

)2]
= n4E

[(
yTuuTAvvT y

)2]
= n4E

[
(uT y)2(vT y)2(uTAv)2

]
.
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By the CauchySchwarz inequality,

(uTAv)2 ≤ (uTAu)(vTAv),

and by Lemma 19, uTAu ≤ µ2n−1tr (A), and so

(uTAv)2 ≤ µ4n−2tr (A)
2
.

Therefore,

E

[(
yT Ãy

)2]
≤ µ4n2tr (A)

2
E
[
(uT y)2(vT y)2

]
= µ4tr (A)

2 ‖y‖4 .

So it suffices to choose σ2
r = µ4tr (A)

2, as desired.

D.1.2. RECTANGULAR ENTRYWISE SAMPLING

Proof of Lemma 3. We recall that the rectangular entry-
wise samples are of the form

Ã = mnMij(eie
T
m+j + em+je

T
i ),

where i ∈ 1, . . . ,m and j ∈ 1, . . . , n are chosen uniformly
and independently. Now, for any y and z in Rm+n,

E
[
(zT Ãy)2

]
= m2n2E

[
M2

ij(z
T (eie

T
m+j + em+je

T
i )y)2

]
.

Applying the entry bound,

E
[
(zT Ãy)2

]
≤ ξmn ‖M‖2F E

[
(zT eie

T
m+jy + zT em+je

T
i y)2

]
.

Now, since (x + y)2 ≤ 2(x2 + y2), if we let P be
the projection matrix onto the first m basis vectors, then
E
[
eie

T
i

]
= m−1P and E

[
em+je

T
m+j

]
= n−1(I − P ),

and so,

E
[
(zT Ãy)2

]
≤ 2ξmn ‖M‖2F E

[
(zT ei)

2(eTm+jy)2 + (zT em+j)
2(eTi y)2

]
= 2ξ ‖M‖2F

(
‖Pz‖2 ‖(I − P )y‖2 + ‖(I − P )z‖2 ‖Py‖2

)
≤ 2ξ ‖M‖2F ‖y‖

2 ‖z‖2 .

Since this is true for any y and z, it is true in particular
for z being an eigenvector of A. Therefore, it suffices to
pick σ2

a = 2ξ ‖M‖2F . Similarly, it is true in particular for
z = y, and therefore it suffices to pick σ2

r = 2ξ ‖M‖2F .
This proves the lemma.

D.1.3. TRACE SAMPLING

In order to prove our second moment lemma for the trace
sampling case, we must first derive some lemmas about the
way this distribution behaves.

Lemma 20 (Sphere Component Fourth Moment). If n >
50, and v ∈ Rn is sampled uniformly from the unit sphere,
then for any unit vector y ∈ Rn,

E
[(
yT v

)4] ≤ 4

n2
.

Proof. Let x be sampled from the standard normal distri-
bution in Rn. Then, by radial symmetry,

E
[(
yT v

)4]
= E

[(
yTx

)4
‖x‖4

]
.

If we let u denote yTx, and z denote the components of
x orthogonal to y, then ‖x‖2 = u2 + ‖z‖2. Furthermore,
by the properties of the normal distribution, u and z are
independent. Therefore,

E
[(
yT v

)4]
= E

[
u4
(
u2 + ‖z‖2

)−2]
≤ E

[
u4
(
‖z‖2

)−2]
= E

[
u4
]
E
[
‖z‖−4

]
.

Now, E
[
u4
]

is the fourth moment of the normal distribu-

tion, which is known to be 3. Furthermore, E
[
‖z‖−4

]
is

the second moment of an inverse-chi-squared distribution
with parameter n − 1, which is also a known result. Sub-
stituting these in,

E
[(
yT v

)4] ≤ 3
(

(n− 3)
−2

+ 2 (n− 3)
−2

(n− 5)
−1
)

= 3 (n− 3)
−2
(

1 + 2 (n− 5)
−1
)
.

This quantity has the asymptotic properties we want. In
particular, applying the constraint that n > 50,

E
[(
yT v

)4] ≤ 4

n2
.

This is the desired result.

Lemma 21 (Sphere Component Fourth Moment Matrix).
If n > 50, and v ∈ Rn is sampled uniformly from the unit
sphere, then for any positive semidefinite matrix W ,

E
[
vvTWvvT

]
� 4n−2tr (W ) I.

Proof. Let

W =

n∑
i=1

λiwiw
T
i
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be the eigendecomposition of W . Then for any unit vector
z,

zTE
[
vvTWvvT

]
z = E

[
zT vvT

(
n∑

i=1

λiwiw
T
i

)
vvT z

]

=

n∑
i=1

λiE
[(
zT v

)2 (
wT

i v
)2]

.

By the Cauchy-Schwarz inequality applied to the expecta-
tion,

E
[(
zT v

)2 (
wT

i v
)2] ≤√E

[
(zT v)

4
]
E
[(
wT

i v
)2]

= E
[
(zT v)4

]
.

By Lemma 20, E
[
(zT v)4

]
≤ 4n−2, and so

zTE
[
vvTWvvT

]
z ≤

n∑
i=1

λi(4n
−2) = 4n−2tr (W ) .

Since this is true for any unit vector z, by the definition of
the positive semidefinite relation,

E
[
vvTWvvT

]
� 4n−2tr (W ) I,

as desired.

Now, we prove the AVC lemma for this distribution.

Proof of σa bound part of Lemma 4. Evaluating the ex-
pression we want to bound,

E
[
yT ÃTWÃy

]
= n4E

[
yT vvTAuuTWuuTAvvT y

]
.

Applying Lemma 21,

E
[
yT ÃTWÃy

]
≤ n4E

[
yT vvTA

(
4n−2tr (W ) I

)
AvvT y

]
= 4n2tr (W )E

[
yT vvTA2vvT y

]
.

Again applying Lemma 21,

E
[
yT ÃTWÃy

]
≤ 4n2tr (W ) yT

(
4n−2tr

(
A2
)
I
)
y

= 16 ‖A‖2F tr (W ) ‖y‖2 .

So it suffices to pick σ2
a = 16 ‖A‖2F , as desired.

Proof of σr bound part of Lemma 4. Evaluating the ex-
pression we want to bound,

E

[(
yÃy

)2]
= n4E

[(
yvvTAwwT y

)2]
= n4E

[
tr
(
AvvT yyT vvTAwwT yyTwwT

)]
= n4tr

(
AE

[
vvT yyT vvT

]
AE

[
wwT yyTwwT

])
.

Applying Lemma 21 to this results in

E

[(
yÃy

)2]
≤ n4tr

(
A
(
4n−2tr

(
yyT

)
I
)
A
(
4n−2tr

(
yyT

)
I
))

= 16 ‖A‖2F ‖y‖
4
.

So it suffices to pick σ2
r = 16 ‖A‖2F , as desired.

D.1.4. SUBSPACE SAMPLING

Recall that, in subspace sampling, our samples are of the
form

Ã = rn2m−2QvvTR,

where Q and R are independent projection matrices that
select m entries uniformly at random, and v is uniformly
and independently selected from the column space of A.
Using this, we first prove some lemmas, then prove our
bounds.

Lemma 22. If Q is a projection matrix that projects onto
a subspace spanned by m random standard basis vectors,
and v is a member of a subspace that is incoherent with
parameter µ, then for any vector x,

(xTQv)2 ≤ (µmr +m2)n−2 ‖x‖2 ‖v‖2 .

As a corollary, for any symmetric matrix W � 0,

vTQWQv ≤ (µmr +m2)n−2tr (W ) ‖v‖2 .

Proof. Let λi be 1 in the event that ei is in the column
space of Q, and 0 otherwise. Then an eigendecomposition
of Q is

Q =

n∑
i=1

λieie
T
i .

Therefore,

(xTQv)2 =

(
n∑

i=1

λix
T eie

T
i v

)2

=

n∑
i=1

n∑
j=1

λiλjxixjvivj .

Taking the expected value, and noting that λi and λj are
independent, and have expected value E [λi] = mn−1,

E
[
(xTQv)2

]
= m2n−2

n∑
i=1

n∑
j=1

xixjvivj

+mn−1(1−mn−1)

n∑
i=1

x2i v
2
i .
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Since v is part of a subspace that is incoherent,

E
[
(xTQv)2

]
≤ m2n−2

n∑
i=1

n∑
j=1

xixjvivj

+ µmrn−2(1−mn−1) ‖v‖2
n∑

i=1

x2i

= m2n−2(xT v)2

+ µmrn−2 ‖x‖2 ‖v‖2

≤ (µmr +m2)n−2 ‖x‖2 ‖v‖2 ,

as desired.

Proof of σa bound part of Lemma 5. Evaluating the ex-
pression we want to bound,

E
[
yT ÃTWÃy

]
= r2n4m−4E

[
yTRvvTQWQvvTRy

]
= r2n4m−4E

[
E
[
vTRyyTRv

]
E
[
vTQWQv

]]
.

Applying Lemma 22,

E
[
yT ÃTWÃy

]
≤ r2m−4(µmr +m2)2tr (W ) ‖y‖2

= r2(1 + µrm−1)2tr (W ) ‖y‖2 .

So, we can choose σ2
a = r2(1 + µrm−1)2, as desired.

Proof of σr bound part of Lemma 5. Evaluating the ex-
pression we want to bound,

E
[
(yT Ãy)2

]
= r2n4m−4E

[
(yTQvvTRy)2

]
= r2n4m−4E

[
E
[
(yTQv)2

]
E
[
(yTRv)2

]]
.

Applying Lemma 22,

E
[
(yT Ãy)2

]
≤ r2m−4(µmr +m2)2 ‖y‖4

= r2(1 + µrm−1)2 ‖y‖4 .

So, we can choose σ2
r = r2(1 + µrm−1)2, as desired.

E. Lower Bound on Alecton Rate
In this section, we prove a rough lower bound on the rate
of convergence of an Alecton-like algorithm for bounded
sampling distributions. Specifically, we analyze the case
where, rather than choosing a constant η, we allow the step
size to vary at each timestep. Our result shows that we
can’t hope for a better step size rule that improves the con-
vergence rate of Alecton to, for example, a linear rate.

To show this lower bound, we assume we run Alecton with
p = 1 for some sampling distribution such that for all η and
all y, for some constant C,∥∥∥y + ηÃy

∥∥∥ ≤ (1 + ηC) ‖y‖ .

Further assume that for some eigenvector u (with eigen-
value λ ≥ 0) that is not global solution, the sample variance
in the direction of u satisfies

E
[
ÃTuuT Ã

]
≥ σ2I.

We now define ρk to be

ρk =
(uTYk)2

‖Yk‖2
.

This quantity measures the error of the iterate at timestep k
in the direction of u. We will show that the expected value
of ρk can only decrease with at best a Ω

(
1

K+1

)
rate.

First, we require a lemma.
Lemma 23. For any a ≥ 0, b ≥ 0, and 0 ≤ x ≤ 1,

a(1− x)2 + bx2 ≥ ab

a+ b
.

Proof. Expanding the left side,

a(1− x)2 + bx2 = a− 2ax+ (a+ b)x2

= a− a2

a+ b
+

a2

a+ b
− 2ax+ (a+ b)x2

=
ab

a+ b
+

(a− (a+ b)x)2

a+ b

≥ ab

a+ b
,

as desired.

Theorem 3. Under the above conditions, regardless of how
we choose the step size in the Alecton algorithm, even if we
are able to choose a different step size each iteration, the
expected error will still satisfy

E [ρK ] ≥ σ2

σ2n+ C2K
.

Proof. Using the Alecton update rule with a time-varying
step size ηk,

ρk+1 =
(uTYk)2

‖Yk‖2

=
(uTYk + ηku

T ÃkYk)2∥∥∥Yk + ηkÃkYk

∥∥∥2
≥ (uTYk + ηku

T ÃkYk)2

(1 + ηkC)2 ‖Yk‖2
.
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Taking the expected value,

E [ρk+1] ≥ E

[
(uTYk + ηku

T ÃkYk)2

(1 + ηkC)2 ‖Yk‖2

]

≥ E

[
(1 + 2ηkλ)(uTYk)2 + η2kσ

2Y T
k Yk

(1 + ηkC)2 ‖Yk‖2

]

=
1 + 2ηkλ

(1 + ηkC)2
E [ρk] +

η2kσ
2

(1 + ηkC)2

≥ 1

(1 + ηkC)2
E [ρk] +

η2kσ
2

(1 + ηkC)2

Now, if we define ζk as

ζk =
ηkC

1 + ηkC
,

then

E [ρk+1] ≥ (1− ζk)2E [ρk] + ζ2kσ
2C−2.

Applying Lemma 23,

E [ρk+1] ≥ σ2C−2E [ρk]

E [ρk] + σ2C−2
.

Taking the inverse,

1

E [ρk+1]
≤ 1

E [ρk]
+
C2

σ2
.

Therefore, summing across steps,

1

E [ρK ]
≤ 1

E [ρ0]
+
C2K

σ2
.

Since, by symmetry, E [ρ0] = n−1, we have

1

E [ρK ]
≤ n+

C2K

σ2
.

and taking the inverse again produces

E [ρK ] ≥ σ2

σ2n+ C2K
,

which is the desired expression.

F. Handling Constraints
Alecton can easily be adapted to solve the problem of find-
ing a low-rank approximation to a matrix under a specta-
hedral constraint. That is, we want to solve the problem

minimize ‖A−X‖2F
subject to X ∈ RN×N , tr (X) = 1,

rank (X) ≤ 1, X � 0.

This is equivalent to the decomposed problem

minimize ‖y‖4 − 2yTAy + ‖A‖2F
subject to y ∈ RN , ‖y‖2 = 1,

which is itself equivalent to:

minimize 1− 2yTAy + ‖A‖2F
subject to y ∈ RN , ‖y‖2 = 1.

This will have a minimum when y = u1. We can therefore
solve the problem using only the angular phase of Alec-
ton, which recovers the vector u1. The same convergence
analysis described above still applies.

For an example of a constrained problem that Alecton
cannot handle, because it is NP-hard, see the elliptope-
constrained MAXCUT embedding in Appendix A. This
shows that constrained problems can’t be solved efficiently
by SGD algorithms in all cases.

G. Towards a Linear Rate
In this section, we consider a special case of the matrix
recovery problem: one in which the samples we are given
would allow us to exactly recover A. That is, for some
linear operator Ω : Rn×n → Rs, we are given the value of
Ω(A) as an input, and we know that the unique solution of
the optimization problem

minimize ‖Ω(X −A)‖2
subject to X ∈ Rn×n, rank (X) ≤ p,X � 0

is X = A. Performing a rank-p quadratic substitution on
this problem results in:

minimize
∥∥Ω(Y Y T −A)

∥∥2
subject to Y ∈ Rn×p

The specific case we will be looking at is where the opera-
tor Ω satisfies the p-RIP constraint.

Definition 8 (Restricted isometry property). A linear oper-
ator Ω : Rn×n → Rs satisfies p-RIP with constant δ if for
all X ∈ Rn×n of rank at most p,

(1− δ) ‖X‖2F ≤ ‖Ω(X)‖2 ≤ (1 + δ) ‖X‖2F .

This definition encodes the notion that Ω preserves the
norm of low-rank matrices under its transformation. We
can prove a simple lemma that extends this to the inner
product.

Lemma 24. If Ω is (p+ q)-RIP with parameter δ, then for
any symmetric matrices X and Y of rank at most p and q
respectively,

Ω(X)T Ω(Y ) ≥ tr (XY )− δ ‖X‖F ‖Y ‖F
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Proof. For any a ∈ R, since Ω is linear,

tr (Ω(X)Ω(Y )) =
1

4a

(
‖Ω(X) + aΩ(Y )‖2

− ‖Ω(X)− aΩ(Y )‖2
)

=
1

4a

(
‖Ω(X + aY )‖2

− ‖Ω(X − aY )‖2
)
.

Since rank (X − aY ) ≤ rank (X) + rank (Y ) ≤ p+ q,
we can apply our RIP inequalities, which produces

tr (Ω(X)Ω(Y )) ≥ 1

4a

(
(1− δ) ‖X + aY ‖2F

− (1 + δ) ‖X − aY ‖2F
)

≥ 1

4a

(
−2δ ‖X‖2F + 4atr (XY )

− 2δa2 ‖Y ‖2F
)

= tr (XY )− δ
‖X‖2F + a2 ‖Y ‖2F

2a
.

Substituting a =
‖X‖F
‖Y ‖F

results in

tr (Ω(X)Ω(Y )) ≥ tr (XY )− δ ‖X‖F ‖Y ‖F ,

as desired.

Finally, we prove our main theorem that shows that the
quadratically transformed objective function is strongly
convex in a ball about the solution.

Theorem 4. If we define f(Y ) as the objective function of
the above optimization problem, that is for Y ∈ Rn×p and
A ∈ Rn×n symmetric of rank no greater than p,

f(Y ) =
∥∥Ω(Y Y T −A)

∥∥2 ,
and Ω is 3p-RIP with parameter δ, then for all Y , if we let
λp denote the smallest positive eigenvalue of A then

∇2
V f(Y ) � 2

(
(1− δ)λp − (3 + δ)

∥∥Y Y T −A
∥∥
F

)
I.

Proof. The directional derivative of f along some direction
V will be, by the product rule,

∇V f(Y ) = 2Ω(Y Y T −A)T Ω(Y V T + V Y T ).

The second derivative along this same direction will be

∇2
V f(Y ) = 4Ω(Y Y T −A)T Ω(V V T )

+ 2Ω(Y V T + V Y T )T Ω(Y V T + V Y T )

= 4Ω(Y Y T −A)T Ω(V V T )

+ 2
∥∥Ω(Y V T + V Y T )

∥∥2 .

To this, we can apply the definition of RIP, and the corollary
lemma, which results in

∇2
V f(Y ) ≥ 4tr

(
(Y Y T −A)(UUT )

)
− 4δ

∥∥Y Y T −A
∥∥
F

∥∥UUT
∥∥
F

+ 2(1− δ)
∥∥Y UT + UY T

∥∥2
F
.

By Cauchy-Schwarz,

∇2
V f(Y ) ≥ −4

∥∥Y Y T −A
∥∥
F
tr
(
UUT

)
− 4δ

∥∥Y Y T −A
∥∥
F
tr
(
UUT

)
+ 2(1− δ)λmin(Y TY )tr

(
UUT

)
= 2

(
(1− δ)λmin(Y TY )

− 2(1 + δ)
∥∥Y Y T −A

∥∥
F

)
tr
(
UUT

)
.

Now, since at the optimum, λmin(Y TY ) = λp, it follows
that for general Y ,

λmin(Y TY ) ≥ λp −
∥∥Y Y T −A

∥∥
F
.

Substituting this in to the previous expression,

∇2
V f(Y ) ≥ 2

(
(1− δ)(λp −

∥∥Y Y T −A
∥∥
F

)

− 2(1 + δ)
∥∥Y Y T −A

∥∥
F

)
tr
(
UUT

)
= 2

(
(1− δ)λp− (3 + δ)

∥∥Y Y T −A
∥∥
F

)
‖U‖2F .

Since this is true for an arbitrary direction vector U , it fol-
lows that

∇2
V f(Y ) � 2

(
(1− δ)λp − (3 + δ)

∥∥Y Y T −A
∥∥
F

)
I,

which is the desired result.

This theorem shows that there is a region of size O(1) (i.e.
not dependent on n) within which the above problem is
strongly convex. So, if we start within this region, any stan-
dard convex descent method will converge at a linear rate.
In particular, coordinate descent will do so. Therefore, we
can imagine doing the following:

• First, use Alecton to, with high probability, recover
an estimate Y that for which

∥∥Y Y T −A
∥∥
F

is suffi-
ciently small for the objective function to be strongly
convex with some probability. This will only require
O(n log n) steps of the angular phase of the algorithm
per iteration of Alecton, as stated in the main body of
the paper. We will need p iterations of the algorithm
to recover a rank-p estimate, so a total O(np log n)
iterations will be required.



Global Convergence of Stochastic Gradient Descent for Some Non-convex Matrix Problems

• Use a descent method, such as coordinate descent,
to recover additional precision of the estimate. This
method is necessarily more heavyweight than an SGD
scheme (see Section E for the reason why an SGD
scheme cannot achieve a linear rate), but it will con-
verge monotonically at a linear rate to the exact solu-
tion matrix A.

This hybrid method is in some sense a best-of-both worlds
approach. We use fast SGD steps when we can afford to,
and then switch to slower coordinate descent steps when
we need additional precision.
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