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PRODUCTIVITY ISSUES IN HETEROGENEOUS COMPUTING SYSTEMS. THE DELITE COMPILER

FRAMEWORK SIMPLIFIES THE PROCESS OF BUILDING EMBEDDED PARALLEL DSLS. DSL

DEVELOPERS CAN IMPLEMENT DOMAIN-SPECIFIC OPERATIONS BY EXTENDING THE DSL

FRAMEWORK, WHICH PROVIDES STATIC OPTIMIZATIONS AND CODE GENERATION FOR

HETEROGENEOUS HARDWARE. THE DELITE RUNTIME AUTOMATICALLY SCHEDULES AND

EXECUTES DSL OPERATIONS ON HETEROGENEOUS HARDWARE.

= = = = = x POwer constraints have limited
the ability of microprocessor vendors to
scale single-core performance with each
new generation. Instead, vendors are increas-
ing the number of processor cores and incor-
porating specialized hardware to improve
performance.’ For example, GPUs have be-
come essential components of modern sys-
tems because of their massively parallel
computing capability.> However, the ad-
vent of heterogeneous systems creates the
problem of having too many programming
models. Common examples are Pthreads
or OpenMP for multicore CPU, OpenCL
or CUDA for GPU, and message passing
interface (MPI) for clusters. As a result, ap-
plication programmers pursuing higher per-
formance must have expertise not only in
the application domain but also in disparate
parallel programming models and hardware
implementations. In addition, the relative
performance improvement is difficult to
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predict until the program is written and exe-
cuted in different models with elaborate
optimization phases that might also depend
on the input data. Even worse, the opti-
mized code for one system is neither porta-
ble nor guarantees high performance on
another system. Ideally, application pro-
grammers shouldn’t have to manage low-
level implementation details, so they can
focus on algorithmic description and still
obtain high performance.

A successful parallel programming model
should have three broad characteristics
(known as the three Ps): productivity, per-
formance, and portability. To provide pro-
ductivity, a parallel programming model
must raise the level of abstraction above
that of current low-level programming
models such as Pthreads and CUDA. lde-
ally, such a programming model would
also be general, allowing the application
developer to express arbitrary semantics.
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However, despite decades of research, no
such programming model exists. Instead, it
seems that generality, productivity, and per-
formance are usually at odds with one
another, and successful programming lan-
guages must carefully trade them off. For
example, C++ is general and high perfor-
mance, but usually not considered as pro-
ductive as higher-level languages such as
Python and Ruby. On the other hand,
Python and Ruby can’t compete with C++
in terms of performance. Another approach
is to focus on performance and productivity
while trading off generality—for example,
by focusing on a particular domain using
domain-specific languages (DSLs).*® The
ability to exploit domain knowledge to pur-
sue high performance and productivity
make DSLs an ideal platform for attacking
the heterogeneous parallel programming
problem. However, making the DSL approach
useful on a large scale requires lowering the
barrier for DSL development.

To facilitate development of embedded
parallel DSLs, we designed the Delite
compiler framework. DSL developers can
implement domain-specific operations by
extending the DSL framework, which pro-
vides static optimizations and code genera-
tion for heterogeneous hardware. The Delite
runtime automatically schedules and executes
DSL operations on heterogeneous hardware.
We evaluated this approach with OptiML, a
machine-learning DSL, and found signifi-
cant performance benefits when running
OptiML applications on a system using multi-
core CPUs and GPU.

Domain-specific languages

DSLs provide carefully designed APIs
that are easy for developers in the domain
to use. DSL code often more closely resem-
bles pseudocode than C code, deferring
most if not all of the implementation details
to the language. This deferral of responsibil-
ity lets the DSL developer use the most effi-
cient parallel implementation and target
different devices transparently to the applica-
tion. This is feasible only because the DSL
doesn’t try to do everything; instead, it tries
to do a few things very well. DSLs provide
a structured foundation to identify and ex-
ploit parallel execution patterns specific to

particular domains. They aren’t a silver bul-
let, however. They can’t parallelize existing
sequential code, and they don’t on their
own eliminate the parallel programming bur-
den for the DSL developer.

For parallel DSLs to be tractable, they
must be easy to create for many domains.
Traditionally, there are two types of
DSLs.

Internal DSLs are embedded in a host
language, and are sometimes called the
“just-a-library” approach.® These DSLs
typically use a flexible host language to pro-
vide syntactic sugar over library calls. Al-
though this is the easiest approach (no
additional compiler is necessary), it con-
strains the DSL’s capabilities. A purely
embedded, or library-based, DSL can’t
build or analyze an intermediate representa-
tion (IR) of user programs. Thus, such
DSLs can only perform dynamic analyses
and optimizations, and these handicaps
can severely impact achievable parallel per-
formance. More importantly, without an
IR, DSLs can’t do their own code genera-
tion, which prevents retargeting DSL code
to heterogeneous devices.

External DSLs are implemented as a
stand-alone language.” Although these DSLs
obviously don’t have the limitations of inter-
nal DSLs, they’re extremely difficult to build.
The DSL developer must define a grammar
and implement the entire compiler frame-
work as well as tooling to make it useful
(for example, IDE support). This clearly
isn’t a scalable approach.

Our hybrid approach addresses this
dilemma. We use the concept of language
virtualization® t0 characterize a host language
that lets us implement embedded DSLs that
are virtually indistinguishable from stand-
alone DSLs. A virtualizable host language
provides an expressive, flexible front end
that the DSL can borrow, while letting the
DSL leverage metaprogramming facilities to
build and optimize an IR. Figure 1 demon-
strates this separation.

Language virtualization is an effective way
to define and implement DSLs inside a suffi-
ciently flexible host language. However, build-
ing parallel DSLs adds new challenges, such as
implementing parallel patterns, launching
and scheduling parallel tasks, synchronizing
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Building embedded parallel DSLs

For a high-performance DSL to target
heterogeneous parallel systems, its IR should
have at least three major characteristics:

e It should be able to accommodate
traditional compiler optimizations on
DSL operations and data types.

o It should expose common parallel pat-
terns for structured parallelism.

e It should encode enough domain
information to allow implementa-
tion flexibility and domain-specific
optimizations.

The Delite compiler framework, a reusable
compiler infrastructure for developing
DSLs, structures the intermediate represen-
tation of DSLs in a way that meets these
requirements.

Intermediate representation

A single IR node can be viewed from
three perspectives, which provide different
optimizations and code-generation strategies.

We built the Delite compiler framework
using the concept of a multiview IR, as
Figure 3 illustrates.

The most basic view of an IR node is a
symbol and its definition (the generic IR
view), which is similar to a node in a tradi-
tional compiler framework’s flow graph.
We can therefore apply all the well-known
static optimizations at this level. The primary
difference is that our representation has a
coarser granularity because each node is a
DSL operation rather than an individual in-
struction, and this often leads to better opti-
mization results. For example, we can apply
the common subexpression elimination
(CSE) to the vector operations (x(z) — m2u0,
x(z) — mul), as Figure 2 shows, instead of
just to scalar operations. Currently applied
optimizations include CSE, constant propa-
gation, dead code elimination, and code
motion.

A generic IR node can be characterized
by its parallel execution pattern (the paralle!
IR view). Therefore, on top of the generic
IR view, the Delite compiler framework
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provides a finite number of common struc-
tured parallel execution patterns in the
form of DeliteOp IR nodes. Examples
include DeliteOpMap, Which encodes
disjoint element access patterns without
ordering constraints, and DeliteOp-
Foreach, which allows a DSL-defined
consistency model for overlapping ele-
ments. The DeliteOpSequential
IR node is for patterns that aren’t paralleliz-
able. Because certain parallel patterns share
a common notion of loops, we can fuse
multiple loop patterns into a single loop.
The parallel IR optimizer iterates over all
the IR nodes of the various loop types
(DeliteOpMap, DeliteOpZipwith,
and so on), and fuses those with the same
number of iterations into a single loop.
This optimization removes unnecessary
memory allocations and improves cache be-
havior by eliminating multiple passes over
data, which is especially useful for memory-
bound applications.

In addition to the parallel execution
pattern, each domain operation has its own
semantic information encoded in the corre-
sponding domain-specific IR node (the
domain-specific IR view). This view enables
the framework to apply domain-specific
optimizations, such as linear algebra simplifi-
cations, through IR transformations. The
transformation rules are simply described
by pattern matching on domain-specific
IR nodes, and the optimizer replaces the
matched nodes with a simpler set of nodes.
Examples of the transformation on matrix
operations include (4°)’ = Aand A - B +
A-C=A-(B+ C). The separation of
the domain-specific IR from the parallel IR
makes it easy to design implicitly parallel
DSLs, abstracting parallel execution patterns
away from DSL users.

This multiview IR greatly simplifies the
process of developing a new DSL because
all DSLs can reuse the generic IR and parallel
IR in the framework, so DSL developers only



need to design a domain-specific IR for each
domain operation as an extension. Because
DSL developers have expertise in the parallel
execution pattern of each domain operation
in the DSL, they extend the appropriate
Delite parallel IR node to create a domain-
specific IR for each operation. In other
words, DSL developers are only exposed
to a high-level parallel instruction set (the
parallel IR nodes), and the Delite compiler
framework automatically manages the imple-
mentation details of each pattern on multiple
targets.

To build the IR from a DSL application,
the Delite compiler framework uses the /ght-
weight modular staging (LMS) technique.*®
As the application starts executing within
the framework, the framework translates
each operation into a symbolic representa-
tion to form an IR node rather than actually
executing the operation. The IR nodes track
all dependencies among one another, and the
framework applies the various optimizations
on the IR as mentioned earlier. After build-
ing the machine-independent optimized IR,
the Delite compiler framework starts the
code-generation phase to target heteroge-
neous parallel hardware.

Heterogeneous target code generation

Generating a single binary executable for
the application at compile time limits the
application’s portability and requires runtime
and hardware systems to rediscover depen-
dency information to make machine-specific
scheduling decisions. The Delite compiler
framework defers such decisions by generat-
ing kernels for each IR node in multiple
target programming models as well as the
DEG describing the dependencies among
kernels. Currently supported targets are
Scala, C++, and CUDA.

DEG and kernel generation. The Delite gen-
erator controls multiple target generators. It
first schedules IR nodes to form kernels in
the DEG, and iterates over the list of avail-
able target generators to generate corre-
sponding target code for the kernel.
Because of the restrictions of the target
hardware and programming model, it
might not generate the kernel for all targets,
but the kernel generation will succeed as

long as at least one target succeeds. As
each IR node has multiple viewpoints, ker-
nels can be generated differently for each
view. For example, a matrix addition kernel
could be generated in the domain-specific
view code generator written by a DSL devel-
oper, but also in the parallel view because
the operation is implemented by extending
the DeliteOpZipwith parallel IR. Be-
cause the Delite compiler framework pro-
vides parallel implementations for the
parallel IR nodes (DeliteOps), DSL
developers don’t have to provide code gen-
erators for the DSL operations that extend
one of them. When DSL developers already
have an efficient implementation of the ker-
nel (such as basic linear algebra subroutine
[BLAS] libraries for matrix multiplication),
they can generate calls to the external library
using DeliteOpExternal.

GPU code generation. GPU code genera-
tion requires additional work because the
programming model has more constraints
than the Scala and C++ targets. Memory al-
location, for example, is a major issue. Be-
cause dynamic memory allocation within
the kernel is either impossible or impracti-
cal for performance in GPU programming
models, the Delite runtime preallocates all
device memory allocations within the ker-
nel before launching it. To achieve this,
the CUDA generator collects the memory
requirement information and passes it to
the runtime through a metadata field in
the DEG. In addition, because the GPU
resides in a separate address space, input
and output data transfer functions are gen-
erated so that the Delite runtime can man-
age data communication. The CUDA
generator also produces kernel configura-
tion information (the dimensionality of
the thread blocks and the size of each
dimension).

Variants. \When multiple data-parallel
operations are nested, various paralleliza-
tion strategies exist. In a simple case,
a DeliteOpMap operation within a
DeliteOpMap can parallelize the outer
loop, the inner loop, or both. Therefore,
the Delite compiler framework generates a
data-parallel operation in both a sequential
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version and a parallel version to provide
flexible parallelization options when they’re
nested. This feature is especially useful
for the CUDA target generator to improve
the coverage of GPU kernels, because paral-
lelizing the outer loop isn’t always possible
for GPUs due to the kernel’s memory-
allocation requirements. In those cases,
the outer loop is serialized and only
the inner loop is parallelized as a GPU
kernel.

Target-specific  optimizations.  \Whereas
machine-independent optimizations are
applied when building the IR, machine-
specific optimizations are applied during
code generation. For example, the memory-
access patterns that allow better bandwidth
utilization might not always be the same
on the CPU and the GPU. Consider a
data-parallel operation on each row of a ma-
trix stored in a row-major format. For the
CPU, where each core has a private cache,
assigning each row to each core naturally
exploits spatial cache locality and prevents
false sharing. However, the GPU prefers
the opposite access pattern, where each
thread accesses each column, because the
memory controller can coalesce requests
from adjacent threads into a single transfer.
Therefore, the CUDA generator emits code
that uses a transposed matrix with inverted
indices for efficient GPU execution. In addi-
tion, to exploit single-instruction, multiple-
data (SIMD) units for data-parallel opera-
tions on the CPU, we generate source
code that the target compiler can vectorize.
It would also be straightforward to generate
explicit SIMD instructions (such as stream-
ing SIMD extensions and advanced vector
extensions).

Executing embedded parallel DSLs

DSLs targeting heterogeneous parallelism
require a runtime to manage application ex-
ecution. This phase of execution includes
generating a great deal of “plumbing” code
focused on managing parallel execution on
a specific parallel architecture. The imple-
mentation can be difficult to get right,
both in terms of correctness and efficiency,
but is common across DSLs. We therefore
built a heterogeneous parallel runtime to

provide these shared services for all Delite
DsSLs.

Scheduling the DEG

The Delite runtime combines the
machine-agnostic DEG with the current
machine’s specifications (for example, the
number of CPUs or GPUs) to schedule the
application across the available hardware
resources. It schedules the application
before beginning execution using the static
knowledge provided in the DEG. Because
branch directions are still unknown, the
Delite runtime generates a partial schedule
for every straight-line path in the application
and resolves how to execute those schedules
during execution. The scheduling algorithm
attempts to minimize communication
among kernels by scheduling dependent ker-
nels on the same hardware resource and bases
device decisions on kernel and hardware
availability. It schedules sequential kernels
on a single resource while splitting data-
parallel kernels selected for CPU execution
to execute on multiple hardware resources
simultaneously. Because the best strategy for
parallelizing and synchronizing these data-
parallel chunks isn’t known until after sched-
uling, the runtime rather than the compiler
framework is responsible for generating the
decomposition. In the case of a reduce kernel,
for example, the framework’s code generator
emits the reduction function and the runtime
generates a tree-reduction implementation
that’s specialized to the number of processors
selected to perform the reduction.

Generating execution plans for hardware
resources

Dynamically dispatching kernels into a
thread pool can have high overhead. How-
ever, the knowledge provided by the DEG
and the application’s static schedule is suffi-
cient to generate an execution plan for each
hardware resource and compile them to
create executable files. Each executable
file launches the kernels and performs the
necessary synchronization for its resource
according to the partial schedules. The com-
bination of generating custom executable files
for the chosen schedule and delaying the in-
jection of synchronization code until after
scheduling allows for multiple optimizations



in the compiled schedule that minimize run-
time overhead. For example, data that doesn’t
escape a given resource doesn’t require any
synchronization. In addition, the synchroni-
zation implementations are customized to
the underlying memory model between the
communicating resources. When shared
memory is available, the implementation
simply passes the necessary pointers, and
when the resources reside in separate address
spaces, it performs the necessary data trans-
fers. Minimizing runtime overhead by elim-
inating unnecessary synchronization and
removing the central kernel dispatch bottle-
neck lets applications scale with much less
work per kernel.

Managing execution on heterogeneous parallel
hardware

Executing on heterogeneous hardware is
more challenging than executing on tradi-
tional uniprocessor or even multicore sys-
tems. The introduction of multiple address
spaces requires expensive data transfers that
should be minimized. The Delite runtime
minimizes data transfers through detailed
kernel dependency information provided by
the DEG. The graph specifies which inputs
a kernel will simply read and which it will
mutate. This information combined with
the schedule lets the runtime determine at
any time during the execution whether the
version of an input data structure in a
given address space is nonexistent, valid,
or old.

Managing memory allocations in each of
these address spaces is also critical. The
Delite runtime uses the Java Virtual Machine
to automatically manage memory for all
CPU Kkernels, but GPUs have no such facili-
ties. In addition, all memory used by a GPU
kernel must be allocated before launching the
kernel. To deal with these issues, the Delite
runtime preallocates all the data structures
for a given GPU kernel by using the alloca-
tion information supplied by the frame-
work’s GPU code generator. The runtime
also performs liveness analysis using the
schedule to determine the earliest point at
which the GPU no longer needs each ker-
nel’s inputs and outputs. By default, the
GPU host thread attempts to run ahead
asynchronously as much as possible, but

when this creates memory pressure it uses
the liveness information to wait until enough
data becomes dead, free it, and continue
executing.

Experiments

We evaluated a set of machine-learning
applications written in OptiML. We used
two quadcore Xeon 2.67-GHz processors
with 24 Gbytes of memory and an Nvidia
Tesla C2050 GPU for the performance anal-
ysis. We didn’t include the initialization
phase, including input data reading, in the
execution time. We report the average of
the last five executions.

For the performance comparison with
OptiML, we implemented the applications
in three other ways: sequential C++ with li-
brary, parallel Matlab for multicore CPU,
and Matlab for GPU. Matlab is the most
widely used programming model in the
machine-learning community. Moreover,
its performance is often competitive with
C++ for machine-learning kernels due to its
efficient implementation of linear algebra
operations (such as BLAS). We made a rea-
sonable effort in optimizing and parallelizing
the code and selecting the most efficient im-
plementation among the libraries. However,
this was more challenging than we expected.
We couldn’t predict which optimization
strategy (for example, vectorization, the par-
allel construct parfor in Matlab) would per-
form best, because many factors, such as
the number of cores on the system, affect
performance. In addition, the best optimiza-
tion strategy depends on the particular use
case (for example, the matrix’s size or the
amount of work in the operation). Requiring
the application to specify these low-level im-
plementation details often results in multiple
versions of the code and makes porting to
new devices difficult. OptiML does not suf-
fer from this issue because the operations
are implicitly parallel and the optimizations
are applied automatically in the Delite com-
piler framework and runtime rather than
manually in the source code.

We evaluated the C++ implementa-
tions using the Armadillo linear algebra
library** to show that the OptiML single-
core baseline performs comparably to
the C++ library-based implementation.
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When we compare OptiML performance
of multicore CPU and GPU, we see that
Gaussian Discriminant Analysis (GDA) and
Restricted Boltzmann Machine (RBM)
show better performance on the GPU. This
is because those applications consist of data-
parallel operations with regular memory-
access patterns, which is a good fit for
GPUs. The other four applications don’t per-
form well on the GPU because the initial
memory transfer to the GPU takes too
much time (naive Bayes) or because of fre-
quent communication between the CPU
and GPU. From this result, we conclude
that neither the CPU nor the GPU is always
the optimal solution, and therefore we need a
hybrid approach with enough flexibility, as in
the Delite runtime. In addition, OptiML
applications don’t need to be changed at all
to run on different targets, whereas other
implementations require source code modifi-
cations with optimization efforts to run rea-
sonably well on each target.

Figure 5 shows the performance impact
of static optimizations on a downsampling
application. The C++ implementation is
hand-optimized with manual operation fus-
ing. Without the Delite compiler frame-
work’s static optimizations, OptiML is
3 times slower than C++. However, with
the fusing optimization, which combines
multiple iterations into a single pass, and
the code motion of hoisting operations out
of the loops, OptiML obtains slightly better
performance than C++.

sing the Delite compiler framework,

we're currently implementing DSLs
for other domains including graph analysis,
database querying, and mesh-based solvers.
They all share the framework infrastructure
for the IR optimizations and heterogeneous
target code generation, demonstrating our
system’s effectiveness in building implicitly
parallel DSLs that target heterogeneous
systems. However, the current Delite frame-
work isn’t well-suited for expressing all
possible DSLs. For example, highly dynamic
languages that modify classes or dispatch
methods at runtime would be difficult to
implement, given that Delite promotes a
functional rather than object-oriented
design. In addition, Delite doesn’t support
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downsampling application.

Fusing and code motion optimizations of the Delite compiler framework
significantly improve OptiML performance, even better than manually

optimized C++ code. Speedup numbers are

DSLs whose front ends can’t be fully
embedded in Scala. This isn’t a fundamental
limitation, however, and we expect to
address it with further development. itk
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