
Taming the Wild: A Unified Analysis of
HOGWILD!-Style Algorithms

Christopher De Sa, Ce Zhang, Kunle Olukotun, and Chris Ré
cdesa@stanford.edu, czhang@cs.stanford.edu, kunle@stanford.edu, chrismre@cs.stanford.edu

Departments of Electrical Engineering and Computer Science, Stanford University

Overview
Everyone uses stochastic gradient descent!
. De facto method for training models in machine learning.
. Important to run it fast on increasingly-parallel machines.

one model

thread 1

. . .

simultaneous
reads/writes

thread 3

thread 2

HOGWILD! Execution Common heuristic: asyn-
chronous HOGWILD! execution
. Run multiple threads of SGD in

parallel without locks.
. Scales very well on modern

hardware.
– often almost linearly

. Very widely used.

Wide variety of applications and variants:
. PageRank approximations (FrogWild!)
. Deep learning (Dogwild!, DeepDive)
. Asynchronous stochastic coordinate descent (ASYSCD)
. Asynchronous stochastic proximal iteration (APPROX)

But it’s hard to tell when a HOGWILD! algorithm will work.
. Can analyze each extension from scratch, but is cumbersome.

Our contribution: a unified analysis of HOGWILD!
. Introduce a new martingale-based result that handles each

variant as a different form of noise within a unified model.
. Relax sparsity constraints of previous convex results.
. Derive first HOGWILD! convergence results for a non-

convex problem, matrix completion.

Beyond HOGWILD!: Low Precision

We propose BUCKWILD!, a fast heuristic for asynchronous
SGD using low-precision arithmetic.
. Low-precision lowers the required memory bandwidth.
. Also lets us use high-throughput SIMD instructions.

SIMD Precision SIMD Parallelism

Martingales and Stochastic Gradient Descent

Problem setup.

We’re trying to solve stochastic opti-
mization problems of the form

minimize E[f̃ (x)] over x ∈ Rn

by repeatedly running SGD updates

xt+1 = xt − G̃t(xt),

where G̃t is a random sample from some
distribution. The goal of the algorithm is
to produce, by some time T , a sample in
some success region S close to the opti-
mum; if we don’t, we say the algorithm
has failed.

Martingales: The sequential case.

A martingale-based proof for SGD starts with a rate super-
martingale, which is a function Wt : Rn×t → R that satisfies
the following conditions. First,

E
[
Wt+1(xt −∇G̃t(xt), xt, . . . , x0)

]
≤ Wt(xt, xt−1, . . . , x0).

Second, if the algorithm hasn’t succeeded yet, then

Wt(xt, xt−1, . . . , x0) ≥ t.

A rate supermartingale immediately lets us bound the probabil-
ity of failure of sequential SGD:

P (sequential SGD doesn’t succeed before T) ≤ E [W0(x0)]

T
.

Convergence Rates for Asynchronous SGD

Modeling the hardware.
. Behavior of HOGWILD! SGD will

depend on the hardware
– hardware affects rate of race con-

ditions
. We use a parameter τ to abstract

away unnecessary details about the
machine:
– number of cores
– cache coherence protocol

. Roughly τ is the number of writes
that can be “in flight” at a time.

T1	 T2	 T3	 T3	

T1 updates part of model

propagates within τ steps

Main Theorem: HOGWILD! Convergence
Assume some regularity conditions on the rate supermartin-
gale. First, W must be Lipschitz continuous:

‖Wt(u, xt−1, . . . , x0)−Wt(v, xt−1, . . . , x0)‖ ≤ H ‖u− v‖ .
Second, G̃ must also be Lipschitz continuous:

E
[∥∥G̃(u)− G̃(v)

∥∥] ≤ R ‖u− v‖1 .
Third, the expected magnitude of an update must be bounded:

E
[∥∥G̃(x)

∥∥] ≤ ξ.

Then the probability of failure is bounded by

P (HOGWILD! doesn’t succeed before T) ≤ E [W (0, x0)]

(1−HRξτ)T .

Example Analysis: Convex Case

Convex case. Assume that f is strongly convex with
parameter c, that∇f̃ is Lipschitz continuous with con-
stant L, and that E[‖f̃ (x)‖2] ≤ M 2. Let S = {x|‖x −
x∗‖2≤ ε}. A rate supermartingale for this problem is

Wt(xt, . . .) =
ε

2αcε− α2M 2
log

(
e ‖xt − x∗‖2 ε−1

)
+t.

Constructing this rate supermartingale follows from
classic analysis of strongly-convex functions, and re-

quires no additional work beyond proving sequential
convergence. If we choose step size

α =
cεϑ

M 2 + 2LMτ
√
ε
.

we can bound HOGWILD!’s probability of failure:

P (fail) ≤ M 2 + 2LMτ
√
ε

c2εϑT
log

(
e ‖x0 − x∗‖2 ε−1

)
.

Non-Convex Case
Our analysis is general enough to apply to a non-convex problem.

−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3

Matrix completion
. Non-convex because of un-

stable fixed points.
. Non-convexity means that

standard convex analysis of
HOGWILD! doesn’t apply.

. No existing HOGWILD! re-
sults.

Because there was an existing martingale-based result for the se-
quential case, our method easily extends it to show that HOG-
WILD! works for this problem.

This is backed up by experiments. Here we compare some tra-
jectories of 12-thread HOGWILD! and sequential SGD on matrix
completion — notice that the dynamics are basically the same.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900 1000

an
gu

la
re

rr
or

iterations (thousands)

HOGWILD! vs. Sequential Matrix Completion for n = 104

sequential
HOGWILD!

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

an
gu

la
re

rr
or

iterations (billions)

HOGWILD! vs. Sequential Matrix Completion for n = 106

sequential
HOGWILD!

Low-Precision with BUCKWILD!

We ran BUCKWILD!, i.e. low-precision asynchronous SGD, on
logistic regression. This table shows the training loss as precision
is changed — notice that low-precision has no effect on loss.

Table 1: Training loss of SGD as a function of arithmetic precision for logistic regression.

Dataset Rows Columns Size 32-bit float 16-bit int 8-bit int
Reuters 8K 18K 1.2GB 0.5700 0.5700 0.5709

Forest 581K 54 0.2GB 0.6463 0.6463 0.6447
RCV1 781K 47K 0.9GB 0.1888 0.1888 0.1879
Music 515K 91 0.7GB 0.8785 0.8785 0.8781

Definition 3. A matrix A 2 Rn⇥n is incoherent with parameter µ if for every standard basis vector
ej , and for all unit eigenvectors ui of the matrix, (eT

j ui)
2 µ2n�1.

They also require that the step size be set, for some constants 0 < � 1 and 0 < # < (1 + ✏)�1 as

⌘ =
�✏�#

2nµ4 kAk2
F

.

For ease of analysis, we add the additional assumptions that our algorithm runs in some bounded
space. That is, for some constant C, at all times t, 1 kxtk and kxtk1 C. As in the convex
case, by following the martingale-based approach of De Sa et al. [4], we are able to generate a rate
supermartinagle for this algorithm—to save space, we only state its initial value and not the full
expression.
Lemma 2. For the problem above, choose any horizon B such that ⌘�✏�B 1. Then there exists
a function Wt such that Wt is a rate supermartingale for the above non-convex SGD algorithm with
parameters H = 8n⌘�1��1��1✏�

1
2 , R = ⌘µ kAkF , and ⇠ = ⌘µ kAkF C, and

E [W0(x0)] 2⌘�1��1 log(en��1✏�1) + B
p

2⇡�.

Note that the analysis parameter � allows us to trade off between B, which determines how long we
can run the algorithm, and the initial value of the supermartingale E [W0(x0)]. We can now produce
a corollary about the convergence rate by applying Theorem 1 and setting B and T appropriately.
Corollary 3. Assume that we run HOGWILD! Alecton under these conditions for T timesteps, as
defined below. Then the probability of failure, P (FT), will be bounded as below.

T =
4nµ4 kAk2

F

�2✏�#
p

2⇡�
log

✓
en

�✏

◆
, P (FT)

p
8⇡�µ2

µ2 � 4C#⌧
p
✏
.

The fact that we are able to use our technique to analyze a non-convex algorithm illustrates its
generality. Note that it is possible to combine our results to analyze asynchronous low-precision
non-convex SGD, but the resulting formulas are complex, so we do not include them here.

4 Experiments

We validate our theoretical results for both asynchronous non-convex matrix completion and BUCK-
WILD!, a HOGWILD! implementation with lower-precision arithmetic. Like HOGWILD!, a BUCK-
WILD! algorithm has multiple threads running an update rule (2) in parallel without locking. Com-
pared with HOGWILD!, which uses 32-bit floating point numbers to represent input data, BUCK-
WILD! uses limited-precision arithmetic by rounding the input data to 8-bit or 16-bit integers. This
not only decreases the memory usage, but also allows us to take advantage of single-instruction-
multiple-data (SIMD) instructions for integers on modern CPUs.

We verified our main claims by running HOGWILD! and BUCKWILD! algorithms on the discussed
applications. Table 1 shows how the training loss of SGD for logistic regression, a convex problem,
varies as the precision is changed. We ran SGD with step size ↵ = 0.0001; however, results are
similar across a range of step sizes. We analyzed all four datasets reported in DimmWitted [25] that
favored HOGWILD!: Reuters and RCV1, which are text classification datasets; Forest, which arises
from remote sensing; and Music, which is a music classification dataset. We implemented all GLM
models reported in DimmWitted, including SVM, Linear Regression, and Logistic Regression, and

7

For convex functions with precision κ, our technique gets us

P (fail) ≤ M 2(1 + κ2) + LMτ (2 + κ2)
√
ε

c2εϑT
log

(
e ‖x0 − x∗‖2 ε−1

)
.

0

1

2

3

4

5

6

1 4 12 24

1

2

sp
ee

du
p

ov
er

32
-b

it
se

qu
en

tia
l

sp
ee

du
p

ov
er

32
-b

it
be

st
H

O
G

W
IL

D
!

threads

Performance of BUCKWILD! for Logistic Regression

32-bit float
16-bit int
8-bit int

. Speedup of BUCKWILD!
running on dense RCV1
dataset.

. Significant speedup from
low precision.

. Up to 2.3× as fast as the
best HOGWILD!

