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Overview Martingales and Stochastic Gradient Descent
Everyone uses stochastic gradient descent! Problem setup. Martingales: The sequential case. Our analysis is general enough to apply to a non-convex problem.
> De facto method for training models in machine learning.
> Important to run it fast on increasingly-parallel machines. We’re trying to solve stochastic opti- A martingale-based proof for SGD starts with a rate super- ’ Matrix completion
mization problems of the form martingale, which is a function W, : R"™ — R that satisfies 2k f > Non-convex because of un-
HOGWILD! Execution Common heuristic: asyn- minimize E[f(z)] over z € R" the following conditions. First, 1 Ah , stable fixed Points.
one model simultaneous chronous HOGWILD! execution E (Wi (2 — V (), 21 20)] < Wiz, 241 7o) 0l ¥ < ¢ 5 > Non-convexity means .that
W reads/writes > Run multiple threads of SGD in by repeatedly running SGD updates o - s N T/ standard convex analysis of
B ead parallel without locks. - Second, if the algorithm hasn’t succeeded yet, then N | HOGWILD! doesn’t apply.
o > Scales very well on modern T = 2 — Gol), —27 * >No existing HOGWILD! re-
. —re2d 3 hardware. where G is a random sample from some Wilws, i1, - 20) 2 8 BT 0 T 3 sults.
L] thread 2 ~ ofteg almost linearly distribution. The goal of the algorithm is A rate supermartingale immediately lets us bound the probabil-
- > Very widely used. to produce, by some time 7’, a sample in ity of failure of sequential SGD: Because there was an existing martingale-based result for the se-
| some success region S close to the opti- E [Wo(z)] quential case, our method easily extends it to show that HOG-
Wide variety of applications and variants: mum; if we don’t, we say the algorithm P (sequential SGD doesn’t succeed before T') < 0 : WILD! works for this problem.

> PageRank approximations (FrogWild!) has failed.

> Deep learning (Dogwild!, DeepDive) This 1s backed up by experiments. Here we compare some tra-

> Asynchronous stochastic coordinate descent (ASYSCD) Co hvergence Rates for AsynCh ronous SGD jectories of 12-thread HOGWILD! and sequential SGD on matrix

> Asynchronous stochastic proximal iteration (APPROX) completion — notice that the dynamics are basically the same.

Modeling the hardware.

HOGWILD! vs. Sequential Matrix Completion for n = 10  HOGWILD! vs. Sequential Matrix Completion for n = 10°
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. . Main Theorem: HoGwiLD! Convergen \
() \d . > Behavior of HOGWILD! SGD will & eore o Conve gence ol 0.9 |
g _D De e p Dlve depend on the hardware Assume some regularity conditions on the rate supermartin- ool 1 . o7l
W A . : . . 2 £ 06|
— hardware affects rate of race con- gale. First, I/ must be Lipschitz continuous: 2 gg 1205
ditions 2 04 | 2ot
But it’s hard to tell when a HOGWILD! algorithm will work. >We use a parameter T to abstract [Wi(u, Ze—1, - - ., Zo) = Wi(v, Zi-1, ..., z0) || < H [[u—2. ol 0.2 |
: : . - gl 0L T Haewihy \
> Can analyze each extension from scratch, but is cumbersome. away unnecessary details about the Second, G must also be Lipschitz continuous: "107100 200 300 400 500 600 700 800 01000 0 02 04 06 08 1 12 14 16
InaChiIle: ) ) iterations (thousands) iterations (billions)
Our contribution: a unified analysis of HOGWILD! _ number of cores E [|G(u) — G)||] < R|lu—v|,. L Precision with BUCKWILD!
> Introduce a new martingale-based result that handles each — cache coherence protocol : : ow ecision wi -
: : : o , _ , Third, the expected magnitude of an update must be bounded:
variant as a different form of noise within a unified model. > Roughly 7 is the number of writes : ..
. : : o , . We ran BUCKWILD!, i.e. low-precision asynchronous SGD, on
> Relax sparsity constraints of previous convex results. that can be “in flight” at a time. E [HG (z) H] < €. o ) ) L. .
: — logistic regression. This table shows the training loss as precision
> Derive first HOGWILD! convergence results for a non- T1 uodat + of model . _ _ . chaneed tice that I cion h tonl
convex problem, matrix completion. updates part of mode Then the probability of failure is bounded by is changed — notice that low-precision has no effect on loss.
E [W(O £L‘0)] Dataset | Rows | Columns Size 32-bit float | 16-bitint | 8-bit int
- . P (HOGWILD! doesn’t succeed before T') < ’ .
Beyond HoGwiLD!: Low Precision j (T HRETT A EAE A R
propagates within T steps RCV1 | 781K | 47K | 0.9GB | 0.1888 0.1888 | 0.1879
We propose BUCKWILD!, a fast heuristic for asynchronous Music | 515K °1 0.7GB | 0.8785 0.8785 | 0.8781
SGD using low-precision arithmetic. “ - - " -
o . | Examp|e An alyS|S: Convex Case For convex functions with precision x, our technique gets us
> Low-precision lowers the required memory bandwidth. M1+ 1)+ LMr(2 4 w2/
> Also lets us use high-throughput SIMD instructions. _ _ . . . . P (fail) < " 5 TRV log (e |zg — z¥|| e‘1> .
Convex case. Assume that f is strongly convex with quires no additional work beyond proving sequential ccedT
SIMD Precision SIMD Parallelism parameter ¢, that V f is L1p280h1tz c20nt1nu0us with con- convergence. If we choose step size Peformanceof BuckwiL! for Logisic Resresson_ 5 Speedup of BUCKWILD!
stant L, and that E||| f(z)[|7] < M~. Let S = {x|||z — 3 6 | e .
- 8 multiplies/cycle “||*< €}. A rate supermartingale for this problem is = cev E / ) running on dense RCVI
E E E E E j (vmulps instruction) X - €s- p g p o M2 + QLMT\/E ;'; 3T 4 % dataset.
= 4t 5]
biti " € 2 1 e : S . — | £ > Significant speedup from
st L 16 multiplies/cycle Wiz, ...) = 5773 108 (6 e — x| € ) +t.  we can bound HOGWILD!’s probability of failure: T3 / - gnificant speedup J
UL LRI (vomaddwd instruction) 2ace — a*M » /A/ ] low precision.
: : . 2 = o= . I
8-bit int vector . Constructing this rate supermartingale follows from - M= +2LMTt/€ o2 1 E e abiton w | 2 >Upto2.3x as Jast as the
| 3 muttplies/cycle tructing | . P (fail) < = log (e [l — 7271 % LB ,
AL LLA LA RN LEAERAY (vomaddubsw instruction) classic analysis of strongly-convex functions, and re- ccedT 0b—r - T best HOGWILD!
threads




