Language Virtualization for Heterogeneous Parallel Computing

Hassan Chafi, Arvind Sujeeth, Zach DeVito, Pat Hanrahan, Kunle Olukotun

Stanford University

Adriaan Moors, Tiark Rompf, Martin Odersky

EPFL
Era of Power Limited Computing

- **Mobile**
 - Battery operated
 - Passively cooled

- **Data center**
 - Energy costs
 - Infrastructure costs
Computing System Power

\[
\text{Power} = \text{Energy}_\text{op} \times \frac{\text{Ops}}{\text{second}}
\]
Heterogeneous Hardware

- Heterogeneous HW for energy efficiency
 - Multi-core, ILP, threads, data-parallel engines, custom engines

- H.264 encode study

Future performance gains will mainly come from heterogeneous hardware with different specialized resources

Source: Understanding Sources of Inefficiency in General-Purpose Chips (ISCA’10)
DE Shaw Research: Anton

Molecular dynamics computer

100 times more power efficient

D. E. Shaw et al. SC 2009, Best Paper and Gordon Bell Prize
Apple A4 in the iPad/Phone

Contains CPU and GPU and …
Heterogeneous Parallel Computing

- Uniprocessor
 - Sequential programming
 - C

- CMP (Multicore)
 - Threads and locks
 - C + (Pthreads, OpenMP)

- GPU
 - Data parallel programming
 - C + (Pthreads, OpenMP) + (CUDA, OpenCL)

- Cluster
 - Message passing
 - C + (Pthreads, OpenMP) + (CUDA, OpenCL) + MPI

Too many different programming models
It’s all About Energy
(Ultimately: Money)

- Human effort just like electrical power
- Aim: reduce development effort, increase performance
- Increase performance now means:
 - reduce energy per op
 - increase # of targets
- Need to reduce effort per target!
IS IT POSSIBLE TO WRITE ONE PROGRAM AND RUN IT ON ALL THESE TARGETS?
HYPOTHESIS: YES, BUT NEED

DOMAIN-SPECIFIC LIBRARIES AND LANGUAGES
A Solution For Pervasive Parallelism

- Domain Specific Languages (DSLs)
 - Programming language with restricted expressiveness for a particular domain
The Holy Grail of Performance Oriented Languages

Performance

Productivity

Completeness
The Holy Grail of Performance Oriented Languages

Performance

Target DSLs

Productivity

Completeness

C/C++

Python

Ruby
Benefits of Using DSLs for Parallelism

Productivity
• Shield average programmers from the difficulty of parallel programming
• Focus on developing algorithms and applications and not on low level implementation details

Performance
• Match generic parallel execution patterns to high level domain abstraction
• Restrict expressiveness to more easily and fully extract available parallelism
• Use domain knowledge for static/dynamic optimizations

Portability and forward scalability
• DSL & Runtime can be evolved to take advantage of latest hardware features
• Applications remain unchanged
• Allows HW vendors to innovate without worrying about application portability
New Problem

We need to develop all these DSLs

Current DSL methods are unsatisfactory
Current DSL Development Approaches

- Stand-alone DSLs
 - Can include extensive optimizations
 - Enormous effort to develop to a sufficient degree of maturity
 - Actual Compiler/Optimizations
 - Tooling (IDE, Debuggers,...)
 - Interoperation between multiple DSLs is very difficult

- Purely embedded DSLs ⇒ “just a library”
 - Easy to develop (can reuse full host language)
 - Easier to learn DSL
 - Can Combine multiple DSLs in one program
 - Can Share DSL infrastructure among several DSLs
 - Hard to optimize using domain knowledge
 - Target same architecture as host language

Need to do better
Need to Do Better

- Goal: Develop embedded DSLs that perform as well as stand-alone ones
- Intuition: General-purpose languages should be designed with DSL embedding in mind
- Can we make this intuition more tangible?
Virtualization Analogy

Want to have a range of differently configured machines

- Not practical to run as many physical machines
- Hardware Virtualization: run the logical machines on virtualizable physical hardware

Want to have a range of different languages

- Not practical to implement as many compilers
- Language Virtualization: embed the logical languages into a virtualizable host language
Language Virtualization Requirements

Expressiveness
- Encompasses syntax, semantics and general ease of use for domain experts

Performance
- Embedded language must be amenable to extensive static and dynamic analysis, optimization and code generation

Safety
- Preserve type safety of embedded language
- No loosened guarantees about program behavior

Modest Effort
- Virtualization is only useful if it reduces effort to embed high performance DSL
Achieving Virtualization: Expressiveness

- OOP allowed higher level of abstractions
 - Add your own types and define operations on them
 - But how about custom type interaction with language features

- Overload all relevant embedding language constructs

  ```
  for (x <- elems if x % 2 == 0) p(x)
  ```

 maps to

  ```
  elems.withFilter(x => x % 2 == 0).foreach(x => p(x))
  ```

- DSL developer can control how loops over domain collection should be represented and executed by implementing withFilter and foreach for their DSL type
Achieving Virtualization: Expressiveness

- For full virtualization, need to apply similar techniques to all other relevant constructs of the embedding language (for example)

```latex
\textbf{if} (\textsf{cond}) \textbf{something} \textbf{else} \textbf{somethingElse}
```

maps to

```latex
\texttt{__ifThenElse(\textsf{cond, something, somethingElse})}
```

- DSL developer can control the meaning of conditionals by providing overloaded variants specialized to DSL types
Outline

- Introduction
 - Using DSLs for parallel programming

- Language Virtualization
 - Enhancing the power of DSL embedding languages

- Polymorphic Embedding and Modular Staging
 - Enhancing the power of embedded DSLs

- Example DSLs
 - OptiML – targets machine learning applications
 - Liszt – targets scientific computing simulations

- Conclusion
Embedded DSL gets it all for free, but can't change any of it.

Lightweight Modular Staging Approach

Modular Staging provides a hybrid approach

Typical Compiler

GPCE’10: Lightweight modular staging: a pragmatic approach to runtime code generation and compiled DSLs
trait TestMatrix {

 def example(a: Matrix, b: Matrix, c: Matrix, d: Matrix) = {
 val x = a*b + a*c
 val y = a*c + a*d
 println(x+y)
 }
}

\[
a*b + a*c + a*c + a*d = a * (b + c + c + d)
\]
trait TestMatrix {this: MatrixArith =>

 def example(a: Rep[Matrix], b: Rep[Matrix],
 c: Rep[Matrix], d: Rep[Matrix]) = {
 val x = a*b + a*c
 val y = a*c + a*d
 println(x+y)
 }
}

- Rep[Matrix]: abstract type constructor ⇒ range of possible implementations of Matrix
- Operations on Rep[Matrix] defined in MatrixArith trait
Lifting Matrix to Abstract Representation

- DSL interface building blocks structured as traits
 - Expressions of type `Rep[T]` represent expressions of type `T`
 - Can plug in different representation
- Need to be able to convert (lift) Matrix to abstract representation
- Need to define an interface for our DSL type

```scala
trait MatrixArith {
  type Rep[T]

  implicit def liftMatrixToRep(x: Matrix): Rep[Matrix]

  def infix_+(x: Rep[Matrix], y: Rep[Matrix]): Rep[Matrix]
  def infix_*(x: Rep[Matrix], y: Rep[Matrix]): Rep[Matrix]
}
```

- Now can plugin different implementations and representations for the DSL
Now Can Build an IR

- Start with common IR structure to be shared among DSLs

```scala
trait Expressions {
  // constants/symbols (atomic)
  abstract class Exp[T]
  case class Const[T](x: T) extends Exp[T]
  case class Sym[T](n: Int) extends Exp[T]

  // operations (composite, defined in subtraits)
  abstract class Op[T]

  // additional members for managing encountered definitions
  def findOrCreateDefinition[T](op: Op[T]): Sym[T]

  implicit def toExp[T](d: Op[T]): Exp[T] = findOrCreateDefinition(d)
}
```

- Generic optimizations (e.g. common subexpression and dead code elimination) handled once and for all
Customize IR with Domain Info

- Choose `Exp` as representation for the DSL types
- Define Lifting function to create expressions
- Extend generic IR with domain-specific node types
- DSL methods build IR as program runs

```scala
trait MatrixArithRepExp extends MatrixArith with Expressions {

  type Rep[T] = Exp[T]

  implicit def liftMatrixToRep(x: Matrix) = Const(x)

  case class Plus(x: Exp[Matrix],y: Exp[Matrix]) extends Op[Matrix]
  case class Times(x: Exp[Matrix],y: Exp[Matrix]) extends Op[Matrix]

  def infix_+(x: Exp[Matrix], y: Exp[Matrix]) = Plus(x, y)
  def infix_*(x: Exp[Matrix], y: Exp[Matrix]) = Times(x, y)
}
```
DSL Optimization

- Use domain-specific knowledge to make optimizations in a modular fashion

```
trait MatrixArithRepExpOpt extends MatrixArithRepExp {
  override def infix_+(x: Exp[Matrix], y: Exp[Matrix]) = (x, y) match {
    case (Times(a, b), Times(c, d)) if (a == c) => infix_*(a, infix_+(b, d))
    case _ => super.plus(x, y)
  }
}
```

- Override IR node creation
- Construct Optimized IR nodes if possible
- Construct default otherwise

- Rewrite rules are simple, yet powerful optimization mechanism
- Access to the full domain specific IR allows for application of much more complex optimizations
Outline

- Introduction
 - Using DSLs for parallel programming

- Language Virtualization
 - Enhancing the power of DSL embedding languages

- Polymorphic Embedding and Modular Staging
 - Enhancing the power of embedded DSLs

- Example DSLs
 - OptiML – targets machine learning applications
 - Liszt – targets scientific computing simulations

- Conclusion
OptiML: A DSL for Machine Learning

- Learning patterns from data
 - Regression
 - Classification (e.g. SVMs)
 - Clustering (e.g. K-Means)
 - Density estimation (e.g. Expectation Maximization)
 - Inference (e.g. Loopy Belief Propagation)
 - Adaptive (e.g. Reinforcement Learning)
Why Machine Learning

- A good domain for studying parallelism
 - Many applications and datasets are time-bound in practice
 - A combination of regular and irregular parallelism at varying granularities
 - At the core of many emerging applications (speech recognition, robotic control, data mining etc.)
OptiML Language Features

- Implicitly parallel data structures
 - General linear algebra data types: Vector[T], Matrix[T]
 - Independent from the underlying implementation
 - Special data types: TrainingSet, TestSet, IndexVector, Image, Video..
 - Encode semantic information

- Implicitly parallel control structures
 - Sum{...}, (0:end) {...}, gradient { ... }, untilconverged { ... }
 - Encode restricted semantics within passed in code block

- Domain specific optimizations
 - Trade off a small amount accuracy for a large amount of performance
 - Relaxed dependencies
 - Best effort computing
OptiML Code Example

- Gaussian Discriminant Analysis

```scala
// x : TrainingSet[Double]
// mu0, mu1 : Vector[Double]
val sigma = sum(0,x.numSamples) {
  if (x.labels(_) == false)
    (x(_)-mu0).trans.outer(x(_)-mu0)
  else
    (x(_)-mu1).trans.outer(x(_)-mu1)
}
```

- ML-specific data types
- Parallel Control structures
- Restricted index semantics
Performance Study (CPU)

- **GDA**: OptiML on DELITE (blue) vs Explicitly Parallelized MATLAB (red)
- **Naive Bayes**: OptiML on DELITE (blue) vs Explicitly Parallelized MATLAB (red)
- **K-means**: OptiML on DELITE (blue) vs Explicitly Parallelized MATLAB (red)
- **SVM**: OptiML on DELITE (blue) vs Explicitly Parallelized MATLAB (red)
- **LBP**: OptiML on DELITE (blue) vs Explicitly Parallelized MATLAB (red)
- **RBM**: OptiML on DELITE (blue) vs Explicitly Parallelized MATLAB (red)

The charts show the normalized execution time for different algorithms across varying CPU counts (1, 2, 4, 8 CPUs). The y-axis represents the normalized execution time, and the x-axis represents the number of CPUs.
Performance Study (GPU)

- GDA
- RBM
- SVM
- KM
- NB
- LBP

Normalized Speedup
Domain Specific Optimizations

- **Best Effort Computation**
- **Relaxed Dependencies**

![Normalized Execution Time Graph]

- K-means
- Best-effort (1.2% error)
- Best-effort (4.2% error)
- Best-effort (7.4% error)

- SVM
- Relaxed SVM (+ 1% error)
Outline

- Introduction
 - Using DSLs for parallel programming

- Language Virtualization
 - Enhancing the power of DSL embedding languages

- Polymorphic Embedding and Modular Staging
 - Enhancing the power of embedded DSLs

- Example DSLs
 - OptiML – targets machine learning applications
 - Liszt – targets scientific computing simulations

- Conclusion
Liszt: A DSL for PDEs

- Mesh-based
- Numeric Simulation
- Huge domains
 - millions of cells
- Example: Unstructured Reynolds-averaged Navier Stokes (RANS) solver
Liszt Language Features

- Built-in mesh interface for arbitrary polyhedra
 - Vertex, Edge, Face, Cell

- Collections of mesh elements
 - Element Sets: faces(c:Cell), edgesCCW(f:Face)

- Mesh-based data storage
 - Fields: val vert_position = position(v)

- Parallelizable iteration
 - forall statements: for(f <- faces(cell)) { … }
Liszt Code Example

for(edge <- edges(mesh)) {
 val flux = flux_calc(edge)
 val v0 = head(edge)
 val v1 = tail(edge)
 Flux(v0) += flux
 Flux(v1) -= flux
}

Simple Set Comprehension
Functions, Function Calls
Mesh Topology Operators
Field Data Storage

Code contains possible write conflicts!
We use architecture specific strategies guided by domain knowledge
- MPI: Ghost cell-based message passing
- GPU: Coloring-based use of shared memory
Using 8 cores per node, scaling up to 96 cores (12 nodes, 8 cores per node, all communication using MPI)

MPI Speedup 750k Mesh

- Linear Scaling
- Liszt Scaling
- Joe Scaling

MPI Wall-Clock Runtime

- Liszt Runtime
- Joe Runtime
GPU Performance

- Scaling mesh size from 50k (unit-sized) cells to 750k (16x) on a Tesla C2050. Comparison is against single threaded runtime on host CPU (Core 2 Quad 2.66Ghz)

![GPU Speedup over Single-Core](image)

Single-Precision: **31.5x**, Double-precision: **28x**
Conclusions

- DSLs can be an answer to the heterogeneous parallel programming problem
- Need embedding languages to be more virtualizable
- First steps in virtualizing Scala
- Lightweight modular staging allows for more powerful embedded DSLs
- Early embedded DSL results are promising
- No unicorns were harmed during production