
Transactional
Predication: High-

Performance Concurrent
Sets and Maps for STM

Nathan G. Bronson, Jared Casper,
Hassan Chafi, Kunle Olukotun

Stanford CS

1

PODC - 26 July 2010

Thread-safe shared maps

2

map

+ big lock

p
ro

g
ra

m
m

a
b

ili
ty

scalability

concurrent map

+ per-key CAS

transactional map

+ atomic block

7ÈÁÔ)ȭÄ ÌÉËÅ
m = new TransactionalHashMap

v = m.get (key)
m.put (key, pureFunc (key))

atomic {
prev = m.remove(key1)
m.put (key2, prev)

}

atomic {
fwd.put (name, phoneNumber)
reverse.put (phoneNumber, name)

}

atomic {
m.get (k).observers += self

}

3

atomic access to

multiple maps

composes with STM

reads and writes

atomic access to

multiple keys

fast access

outside a txn

atomic access to

multiple maps

atomic access to

multiple keys

fast access

outside a txn

Why not just code a map using STM?

ÔSingle-thread overheads

ÔEach map op requires multiple STM reads/writes

ÔReads of shared data must be validated

ÔWrites to shared data must be logged or buffered

ÔNon-transactional map ops must start a transaction

ÔEven though composition is not required!

ÔScalability limits

ÔNot all structural conflicts are semantic conflicts

ÔMore threads false conflicts more frequent

ÔBigger txns false conflicts more wasteful

4

STM challenges: overheads

s= { ôBob, ôDave }

atomic {

s.contains(ôAlice)

}

5

Dave

Bob

s

STM challenges: overheads

s= { ôBob, ôDave }

atomic {

s.contains(ôAlice)

}

6

Dave

Bob

s

Read set contains 3 entries

A transaction is required for even a
solitary non-transactional access

STM challenges: false conflicts

s= { ôBob, ôDave }

ThreadA: atomic {

s.contains(ôAlice)

}

ThreadB: atomic {

s.add(ôCarol)

}

7

Dave

Bob

s

STM challenges: false conflicts

s= { ôBob, ôDave }

ThreadA: atomic {

s.contains(ôAlice)

}

ThreadB: atomic {

s.add(ôCarol)

}

8

Dave

Bob

s

Carol

STM challenges: false conflicts

s= { ôBob, ôDave }

ThreadA: atomic {

s.contains(ôAlice)

}

ThreadB: atomic {

s.add(ôCarol)

}

9

Carol

Bob

s

Dave

ÃÏÎÔÁÉÎÓɉȭ!ÌÉÃÅɊand ÁÄÄɉȭ#ÁÒÏÌɊare semantically
disjoint, but have a structural conflict

STM challenges: false conflicts

s= { ôBob, ôDave }

ThreadA: atomic {

s.contains(ôAlice)

}

ThreadB: atomic {

s.add(ôCarol)

}

10

Carol

Bob

s

Dave

ÃÏÎÔÁÉÎÓɉȭ!ÌÉÃÅɊand ÁÄÄɉȭ#ÁÒÏÌɊare semantically
disjoint, but have a structural conflict

Are all the STM accesses required?

Ô The read or write of a single memory location
corresponds to accessing the setôs abstract state

Ô contains(ôAlice) bob.left.stmRead ()
Ô add(ôCarol) bob.right.stmWrite (...)

Ô Additional reads and writes are required to navigate to
that location and maintain the data structure

Ô Overheads and false conflicts come mainly from the
navigating and maintenance accesses

We should navigate and maintain the structure outside
the transaction, access the abstract state inside the
transaction

11

Factoring the set data structure

1. Donôt store the transactional set S directly

2. Store the elements of a superset U S

3. Store a predicate f: U {0,1} that tests

membership, f(e) = 1 iff e S

The trick

ÔAdding e to Udoesnôt change S if f(e) = 0

ÔU and f can be grown in an escape action

ÔThe STM only needs to manage 1 bit per e

12

Storing U and f

1. Donôt store the transactional set S directly

2. Store the elements of a superset U S

3. Store a predicate f: U {0,1} that tests

membership, f(e) = 1 iff e S

A thread-safe representation

univ = ConcurrentMap [A,TVar [Boolean]]

U = univ.keySet ()

f(e) = univ.get (e). stmRead()

13

A minimal* implementation
class THashSet[A] {

def contains (e : A) = bitForElem (e). stmRead()
def add(e: A) { bitForElem (e). stmWrite (true) }
def remove(e : A) { bitForElem (e). stmWrite (false) }

private val univ = new ConcurrentHashMap[A,TVar [Boolean]]

private def bitForElem (e: A): TVar[Boolean] = {
var bit = univ.get (e)
if (bit == null) {

val fresh = new TVar(false)
bit = univ.putIfAbsent (e, fresh)
if (bit == null)

bit = fresh
}
return bit

}
}

14

* - Weôll add GC of TVars later

What does the factoring buy us?

Ô Lower STM overheads
Ô Read- and write-set entries are minimized

ÔSet read is one txn read
ÔSet insert or removal is one txn write

Ô Non-composed accesses donôt need a transaction
ÔSTMs can heavily optimize isolation barriers

Ô Better scalability
Ô No structural false conflicts

Ô Transactional accesses to the set conflict if and only if they
perform a conflicting operation on the same key

Ô Atomicity and isolation still managed by the STM
Ô Optimistic concurrency and invisible readers

Ô Modular blocking with retry/ orElse works

15

Predicating a map

TSet[A]
ConcurrentMap [A,TVar [Boolean]

TMap[K, V]
ConcurrentMap [K,TVar [Option[V]]

univ.get (k). stmRead() == Some(v)
if the current txn context observes kᵐv

univ.get (k). stmRead() == None
if the current txn context observes k to be absent

16

Trimming the universe

e can be removed when f(e) = 0 and no txns are using e

(reading, writing, or blocked on retry for eôsTVar)

1. Reference counting
Ô Enter before use, exit on txn completion

Ô Add bonus when committing f(e)= 1

Ô Speculatively read f(e), skip entry/exit when bonus is present

2. Soft reference to a throw-away token
Ô When f(e)= 1, TVar holds a strong reference to the token

Ô When f(e)= 0, TVar has only a soft reference

Ô Txn using e keeps a strong reference

Ô GC of token means all participants agree on absence

17

Performance: low contention

18

non-txn 2 ops/txn 64 ops/txn

80-10-10

0-50-50

get% - put% - remove%

80-10-10 80-10-10

0-50-50 0-50-50

key range of 200K

Performance: high contention

19

non-txn 2 ops/txn 64 ops/txn

80-10-10

0-50-50

get% - put% - remove%

80-10-10 80-10-10

0-50-50 0-50-50

key range of 2K

