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Thread-safe shared maps
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m = new TransactionalHashMap

v = m.get (key)
m.put (key, pureFunc (key))

atomic {
prev = m.remove(key1)
m.put (key2, prev )

}

atomic {
fwd.put (name, phoneNumber)
reverse.put ( phoneNumber, name)

}

atomic {
m.get (k).observers += self

}
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Why not just code a map using STM?

ÔSingle-thread overheads

ÔEach map op requires multiple STM reads/writes

ÔReads of shared data must be validated

ÔWrites to shared data must be logged or buffered

ÔNon-transactional map ops must start a transaction

ÔEven though composition is not required!

ÔScalability limits

ÔNot all structural conflicts are semantic conflicts

ÔMore threads false conflicts more frequent

ÔBigger txns false conflicts more wasteful
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STM challenges: overheads

s= { ôBob, ôDave }

atomic {

s.contains(ôAlice)

}
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STM challenges: overheads

s= { ôBob, ôDave }

atomic {

s.contains(ôAlice)

}
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A transaction is required for even a 
solitary non-transactional access



STM challenges: false conflicts

s= { ôBob, ôDave }

ThreadA: atomic {

s.contains(ôAlice)

}

ThreadB: atomic {

s.add(ôCarol)

}
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STM challenges: false conflicts

s= { ôBob, ôDave }

ThreadA: atomic {

s.contains(ôAlice)

}

ThreadB: atomic {

s.add(ôCarol)

}
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Are all the STM accesses required?

Ô The read or write of a single memory location 
corresponds to accessing the setôs abstract state

Ô contains(ôAlice)  bob.left.stmRead ()
Ô add(ôCarol)  bob.right.stmWrite (...)

Ô Additional reads and writes are required to navigate to 
that location and maintain the data structure

Ô Overheads and false conflicts come mainly from the 
navigating and maintenance accesses

We should navigate and maintain the structure outside 
the transaction, access the abstract state inside the 
transaction

11



Factoring the set data structure

1. Donôt store the transactional set S directly

2. Store the elements of a superset U S

3. Store a predicate f: U {0,1} that tests 

membership, f(e) = 1 iff e S

The trick

ÔAdding e to Udoesnôt change S if f(e) = 0

ÔU and f can be grown in an escape action

ÔThe STM only needs to manage 1 bit per e
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Storing U and f

1. Donôt store the transactional set S directly

2. Store the elements of a superset U S

3. Store a predicate f: U {0,1} that tests 

membership, f(e) = 1 iff e S

A thread-safe representation

univ = ConcurrentMap [ A,TVar [Boolean]]

U = univ.keySet ()

f(e) = univ.get ( e). stmRead()
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A minimal* implementation
class THashSet[ A] {

def contains (e : A) = bitForElem (e). stmRead()
def add(e: A)      { bitForElem (e). stmWrite (true) }
def remove(e : A)   { bitForElem (e ). stmWrite (false) }

private val univ = new ConcurrentHashMap[ A,TVar [Boolean]]

private def bitForElem (e: A): TVar[Boolean] = {
var bit = univ.get (e)
if (bit == null) {

val fresh = new TVar(false)
bit = univ.putIfAbsent (e, fresh)
if (bit == null)

bit = fresh
}
return bit

}
}
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* - Weôll add GC of TVars later



What does the factoring buy us?

Ô Lower STM overheads
Ô Read- and write-set entries are minimized

ÔSet read is one txn read
ÔSet insert or removal is one txn write

Ô Non-composed accesses donôt need a transaction
ÔSTMs can heavily optimize isolation barriers

Ô Better scalability
Ô No structural false conflicts

Ô Transactional accesses to the set conflict if and only if they 
perform a conflicting operation on the same key

Ô Atomicity and isolation still managed by the STM
Ô Optimistic concurrency and invisible readers

Ô Modular blocking with retry/ orElse works
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Predicating a map

TSet[ A] 
ConcurrentMap [ A,TVar [Boolean]

TMap[ K, V] 
ConcurrentMap [ K,TVar [Option[ V]]

univ.get ( k). stmRead() == Some( v)
if the current txn context observes kᵐv

univ.get ( k). stmRead() == None
if the current txn context observes k to be absent
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Trimming the universe

e can be removed when f(e) = 0 and no txns are using e

(reading, writing, or blocked on retry for eôsTVar)

1. Reference counting
Ô Enter before use, exit on txn completion

Ô Add bonus when committing f(e)= 1

Ô Speculatively read f(e), skip entry/exit when bonus is present

2. Soft reference to a throw-away token
Ô When f(e)= 1, TVar holds a strong reference to the token

Ô When f(e)= 0, TVar has only a soft reference

Ô Txn using e keeps a strong reference

Ô GC of token means all participants agree on absence
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Performance: low contention
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