Transaciiondl
Predication: Hight
Performance Concurrent
Sets ant\Maps forsSTM

Nathan G. Bronson, Jared Casper,
Hassan Chafi, Kunle Olukotun

Stanford CS

PERVASIE T
PARALLELISH
PODC - 26 July 2010 LABORATORY I
1

Threadsafe sharetirmaps

A

transactional map
+ atomic block

N concurrent map

+ per-key CAS

2
O
©
S
S
©
| -
>
s
S
o

scalability

WEAQIliky 6 A

| EEA

m = new TransactionalHashMap

v = m.get (key)
m.put (key, pureFunc (key))

fast access
outside a txn

atomic access to
multiple keys

atomic access to
multiple maps

composes with STM
reads and writes

|

3

Why not just codle armapiusing STM?

O Single-thread overheads

6 Each map op requires multiple STM reads/writes
6 Reads of shared data must be validated
6 Writes to shared data must be logged or buffered

6 Non-transactional map ops must start a transaction
6 Even though composition is not required!

O Scalabillity limits
6 Not all structural conflicts are semantic conflicts

6 More threads — false conflicts more frequent
O Bigger txns — false conflicts more wasteful

STV c¢haltengesooverheads

s= { 0Bob,

atomic {
s.contains(0 Al

}

STV c¢hallengesooverbeads

s= { 0Bob,

atomic {
s.contains(0 Al

}

Read set contains 3 entries

A transaction is required for even a
solitary non-transactional access

6

STV ¢hallengest {alse coniticts

s= { 0Bob,

ThreadA: atomic {
s.contains(0 Al

}

ThreadB: atomic {
s.add(6 Car o

}

STV challengesfialse coniticts

s= { 0Bob,

ThreadA: atomic {
s.contains(0 Al

}

\ 4

o ThreadB: atomic {
dj/ s.add(60 Car o
}

STV ¢haltengest false @oniticts

s= { 0Bob,

ThreadA: atomic {
s.conatains(0 Al

}

ThreadB: atomic {
s.add(6 Car o

}
AT 1T OAET & DA A jEAEEGorhantigally
disjoint, but have a structural conflict

STV ¢haltengest false @oniticts

s= { 0Bob,

ThreadA: atomic {
s.conatains(0 A)l
lotsOfWorlk()

}

ThreadB: atomic {
s.add(6 Car o

}

AT 1T OAET & DA A jEAEEGorhantigally
disjoint, but have a structural conflict

Are all the STM=aceesses:requirec

O The read or write of a single memory location
corresponds to accessing t

dcont ai ns$ dobleft.stnetRpad ()
6 add (6 G2 rbablright.stmWrite (...)

O Additional reads and writes are required to navigate to
that location and maintain the data structure

O Overheads and false conflicts come mainly from the
navigating and maintenance accesses

We should navigate and maintain the structure outside
the transaction, access the abstract state inside the
transaction

Factoring the setdatasstructure

1. Donodot store t hediectlhm n sik
2. Store the elements of a superset U o S

3. Store a predicate f: U —» {0,1} that tests
membership, f(e) =1 iffee S

The trick

OAddingetoUdoesnot SiEflela=ag e
O U and f can be grown in an escape action
O The STM only needs to manage 1 bit per e

Storing U and f

Donot store t heditecthans ac:

Store the elements of a superset U o S

Store a predicate . U — {0,1} that tests
membership, f(e) = 1iffee S

A thread-safe representation
univ = ConcurrentMap [A, TVar [Boolean]]
U = univ.keySet ()
f(e) = univ.get (e). stmRead)

A minimal* implementation

class THashSef] Al {
def contains (e: A) = bitForElem (e). stmRead)
def add(e: A { bitForElem (e). stmWrite (true) }
def remove(e: A { bitForElem (e). stmWrite (false) }

private val univ = new ConcurrentHashMap[A TVar [Boolean]]

private def bitForElem (e: A):. TVar[Boolean] ={

var bit= univ.get (e)
if (bit ==null{

val fresh= new TVar(false)

bit = univ.putlfAbsent (e, fresh)

if (bit ==null)

bit = fresh

}

} return bit *~We 0| | a didars G@Er

}
14

What doesithe fiactoring lbuyus?

O Lower STM overheads

O Read- and write-set entries are minimized
6 Setread is one txn read
6 Setinsert or removal is one txn write

O Non-composed accesses d o nnéed a transaction
6 STMs can heavily optimize isolation barriers

O Better scalabllity
O No structural false conflicts
O Transactional accesses to the set conflict if and only if they
perform a conflicting operation on the same key
O Atomicity and isolation still managed by the STM
O Optimistic concurrency and invisible readers
O Modular blocking with retry/ orElse works

Predicating armap

TSet[|Al —
ConcurrentMap [A TVar [Boolean]

TMap K, V] —»

ConcurrentMap [K, TVar [Option[V][]

univ.get (k). stmRead) == Some(V)
If the current txn context observes km v

univ.get (k). stmRead) == None
If the current txn context observes k to be absent

Trimming the universe

e can be removed when f(e) = Oand no txns are using e
(reading, writing, or blocked on retry for ed0 $Var)

1. Reference counting
06 Enter before use, exit on txn completion
6 Add bonus when committing f(e)=1
O Speculatively read f(e), skip entry/exit when bonus is present

2. Soft reference to a throw-away token
6 When f(e)= 1, TVar holds a strong reference to the token
6 When f(e)= 0, TVar has only a soft reference
O Txn using e keeps a strong reference
6 GC of token means all participants agree on absence

Performance: llow contention

key range of 200K get%- put% - remove%
»] 80-10-10 80-10-10 | 80-10-10

16

14
12
10

-~
ot S

throughput (ops/us)
throughput (ops/us)
throughput (ops/us)

8 16
threads threads threads

0-50-50 | 0-50-50

throughput (ops/us)
throughput (ops/us)
throughput (ops/us)

threads threads

non-txn 2 ops/txn 64 ops/txn

conc-hash = @ = boosting-soft === txn-pred-soft === == stm-hash

18

Performance: high contention

key range of 2K get%- put% - remove%
80-10-10 80-10-10 80-10-10

non-txn 2 ops/txn 64 ops/txn

conc-hash = @ = boosting-soft === txn-pred-soft === == stm-hash 6

