A DOMAIN SPECIFIC APPROACH TO HETEROGENEOUS PARALLELISM

Hassan Chafi, Arvind Sujeeth, Kevin Brown, HyoukJoong Lee, Anand Atreya, Kunle Olukotun

Stanford University
Pervasive Parallelism Laboratory (PPL)
Era of Power Limited Computing

- **Mobile**
 - Battery operated
 - Passively cooled

- **Data center**
 - Energy costs
 - Infrastructure costs
Computing System Power

\[\text{Power} = \text{Energy}_{op} \times \frac{\text{Ops}}{\text{second}} \]
Heterogeneous Hardware

- Heterogeneous HW for energy efficiency
 - Multi-core, ILP, threads, data-parallel engines, custom engines

- H.264 encode study

Future performance gains will mainly come from heterogeneous hardware with different specialized resources

Source: Understanding Sources of Inefficiency in General-Purpose Chips (ISCA’10)
Heterogeneous Parallel Architectures

Driven by energy efficiency
Heterogeneous Parallel Programming
Programmability Chasm

Too many different programming models
IS IT POSSIBLE TO WRITE ONE PROGRAM
AND
RUN IT ON ALL THESE TARGETS?
Programmability Chasm

Applications

- Scientific Engineering
- Virtual Worlds
- Personal Robotics
- Data informatics

Ideal Parallel Programming Language

- Pthreads
- OpenMP
- CUDA
- OpenCL
- Verilog
- VHDL
- MPI
- Sun T2
- Nvidia Fermi
- Altera FPGA
- Cray Jaguar
The Ideal Parallel Programming Language

Performance

Productivity

Completeness
Successful Languages

Performance

Productivity

Completeness

C/C++

Python

Ruby
Successful Languages

Performance

PPL
Target Languages

Productivity

Competeteness

C/C++

python
Ruby
Domain Specific Languages

- Performance
- Productivity
- Completeness

- Domain Specific Languages
- Python
- Ruby

C/C++
IS IT POSSIBLE TO WRITE ONE PROGRAM AND RUN IT ON ALL THESE TARGETS?
HYPOTHESIS: YES, BUT NEED

DOMAIN-SPECIFIC LIBRARIES AND LANGUAGES
A Solution For Pervasive Parallelism

- Domain Specific Languages (DSLs)
 - Programming language with restricted expressiveness for a particular domain
Benefits of Using DSLs for Parallelism

Productivity
- Shield average programmers from the difficulty of parallel programming
- Focus on developing algorithms and applications and not on low level implementation details

Performance
- Match generic parallel execution patterns to high level domain abstraction
- Restrict expressiveness to more easily and fully extract available parallelism
- Use domain knowledge for static/dynamic optimizations

Portability and forward scalability
- DSL & Runtime can be evolved to take advantage of latest hardware features
- Applications remain unchanged
- Allows HW vendors to innovate without worrying about application portability
Bridging the Programmability Chasm

Applications
- Scientific Engineering
- Virtual Worlds
- Personal Robotics
- Data informatics

Domain Specific Languages
- Rendering
- Physics (LiszT)
- Data Analysis
- Probabilistic (RandomT)
- Machine Learning (OptiML)

DSL Infrastructure
- Domain Embedding Language (Scala)
 - Polymorphic Embedding
 - Staging
 - Static Domain Specific Opt.
- Parallel Runtime (Delite)
 - Task & Data Parallelism
 - Locality Aware Scheduling

Heterogeneous Hardware
OptiML: A DSL for ML

- Machine Learning domain
 - Learning patterns from data
 - Applying the learned models to tasks
 - Regression, classification, clustering, estimation
 - Computationally expensive
 - Regular and irregular parallelism

- Characteristics of ML applications
 - Iterative algorithms on fixed structures
 - Large datasets with potential redundancy
 - Trade off between accuracy for performance
 - Large amount of data parallelism with varying granularity
 - Low arithmetic intensity
OptiML: Motivation

- Raise the level of abstraction
 - Focus on algorithmic description, get parallel performance

- Use domain knowledge to identify coarse-grained parallelism
 - Identify parallel and sequential operations in the domain (e.g. ‘summations, batch gradient descent’)

- Single source => Multiple heterogeneous targets
 - Not possible with today’s MATLAB support

- Domain specific optimizations
 - Optimize data layout and operations using domain-specific semantics

- A driving example
 - Flesh out issues with the common framework, embedding etc.
OptiML: Overview

- Provides a familiar (MATLAB-like) language and API for writing ML applications
 - Ex. val c = a * b (a, b are Matrix[Double])

- Implicitly parallel data structures
 - General data types: Vector[T], Matrix[T]
 - Special data types: TrainingSet, TestSet, IndexVector, Image, Video ..
 - Encode semantic information

- Implicitly parallel control structures
 - sum{...}, (0::end) {...}, gradient { ... }, untilconverged { ... }
 - Allow anonymous functions with restricted semantics to be passed as arguments of the control structures
Example OptiML / MATLAB code (Gaussian Discriminant Analysis)

OptiML code

```plaintext
// x : TrainingSet[Double]
// mu0, mu1 : Vector[Double]
val sigma = sum(0,x.numSamples) { 
  if (x.labels(_) == false) {
    (x(_)-mu0).trans.outer(x(_)-mu0)
  } 
  else {
    (x(_)-mu1).trans.outer(x(_)-mu1)
  }
}
```

ML-specific data types

- Implicitly parallel control structures
- Restricted index semantics

MATLAB code

```matlab
% x : Matrix, y: Vector
% mu0, mu1: Vector

n = size(x,2);
sigma = zeros(n,n);

parfor i=1:length(y)
    if (y(i) == 0)
        sigma = sigma + (x(i,:)-mu0)'*(x(i,:)-mu0);
    else
        sigma = sigma + (x(i,:)-mu1)'*(x(i,:)-mu1);
    end
end
```

(parallel) MATLAB code
MATLAB implementation

- `'parfor` is nice, but not always best
 - MATLAB uses heavy-weight MPI processes under the hood
 - Precludes vectorization, a common practice for best performance
 - GPU code requires different constructs

- The application developer must choose an implementation, and these details are all over the code

```matlab
ind = sort(randsample(1:size(data,2),length(min_dist)));
data_tmp = data(:,ind);
all_dist = zeros(length(ind),size(data,2));
parfor i=1:size(data,2)
  all_dist(:,i) =
  sum(abs(repmat(data(:,i),1,size(data_tmp,2)) -
        data_tmp),1)';
end
all_dist(all_dist==0)=max(max(all_dist));
```
Domain Specific Optimizations

- **Relaxed dependencies**
 - Iterative algorithms with inter-loop dependencies prohibit task parallelism
 - Dependencies can be relaxed at the cost of a marginal loss in accuracy

- **Best effort computations**
 - Some computations can be dropped and still generate acceptable results
 - Provide data structures with “best effort” semantics, along with policies that can be chosen by DSL users

S. Chakradhar, A. Raghunathan, and J. Meng. *Best-effort parallel execution framework for recognition and mining applications.* IPDPS’09
Delite: a framework to help build parallel DSLs

- Building DSLs is hard
 - Building parallel DSLs is harder
 - For the DSL approach to parallelism to work, we need many DSLs

- Delite provides a common infrastructure that can be tailored to a DSL’s needs
 - An interface for mapping domain operations to composable parallel patterns
 - Provides re-usable components: GPU manager, heterogeneous code generation, etc.
Composable parallel patterns

- Delite view of a DSL: a collection of data (DeliteDSLTypes) and operations (OPs)

- Delite supports OP APIs that express parallel execution patterns
 - DeliteOP_Map, DeliteOP_Zipwith, DeliteOP_Reduce, etc.
 - Planning to add more specialized ops
 - DSL author maps each DSL operation to one of the patterns (can be difficult)

- OPs record their dependencies (both mutable and immutable)
Example code for Delite OP

```scala
case class OP_+[A](
  val collA: Matrix[A],
  val collB: Matrix[A],
  val out: Matrix[A])

  (implicit ops: ArithOps[A])


  def func = (a,b) => ops.+(a,b)
}
```

Dependencies

Execution pattern

Interface for this pattern
Delite: a dynamic parallel runtime

- Executes a task graph on parallel, heterogeneous hardware
 - (paper) performs dynamic scheduling decisions
 - (soon) both static and dynamic scheduling

- Integrates task and data parallelism in a single environment
 - Task parallelism at the DSL operation granularity
 - Data parallelism by data decomposition of a single operation into multiple tasks

- Provides efficient implementations of the execution patterns
Delite Execution Flow

Application
```scala
def example(a: Matrix[Int], b: Matrix[Int], c: Matrix[Int], d: Matrix[Int]) = {
  val ab = a * b
  val cd = c * d
  return ab + cd
}
```

Calls Matrix DSL methods

Matrix DSL
```scala
def *(m: Matrix[Int]) = delite.defer(OP_mult(this, m))
def +(m: Matrix[Int]) = delite.defer(OP_plus(this, m))
```

Delite Runtime

DSL defers OP execution to Delite R.T.

Delite applies generic & domain transformations and generates mapping

Hardware Schedule

<table>
<thead>
<tr>
<th>Procs</th>
<th>Hardware Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>![Green Bars]</td>
</tr>
<tr>
<td>1</td>
<td>![Red Bars]</td>
</tr>
</tbody>
</table>
Using GPUs with MATLAB

- MATLAB Parallel Computing Toolbox

```matlab
sigma = gpuArray(zeros(n,n));
for i=1:m
    if (y(i) == 0)
        sigma = sigma + gpuArray(x(i,:)-mu0)'*gpuArray(x(i,:-mu0));
    else
        sigma = sigma + gpuArray(x(i,:)-mu1)'*gpuArray(x(i,:-mu1));
    end
end
```

- AccelerEyes Jacket

```matlab
sigma = gzeros(n,n);
y = gdouble(y);
x = gdouble(x);
for i=1:m
    if (y(i) == 0)
        sigma = sigma + (x(i,:)-mu0)'*(x(i,:-mu0));
    else
        sigma = sigma + (x(i,:)-mu1)'*(x(i,:-mu1));
    end
end
```
Using GPUs with Delite

- No change in the application source code
 - Same application code runs on any kind of heterogeneous system
 - Good for portability
 - Runtime (not the DSL user) dynamically determines whether to ship the operation to GPU or not
 - Good for productivity

- Performance optimizations under the hood
 - Memory transfer between CPU and GPU
 - On-chip device memory utilization
 - Concurrent kernel executions
GPU Code generation

- DSL OPs require implementations of GPU kernels
 - *(paper)* DSL provides optimized implementations
 - Libraries (CUBLAS, CUFFT, etc) can be used
 - *(now)* GPU kernels generated from Scala kernels
 - Write once, run anywhere, libraries can still be used

- What about DSL constructs with anonymous functions?
 - The GPU task is given by DSL user, not DSL writer
 - Impossible to pre-generate kernels
 - Solution: Automatically generate corresponding GPU kernels at compile time
GPU Code Generation Flow

Original Code

\[
\text{val } a = \text{Vector[Double]}(n) \\
\text{val } b = 3.28 \\
\text{val } c = (0::n) \{ i \mapsto i \times b \times a(i) \}
\]

Generated CUDA Code

\[
\text{__global__ kernel0(double *input, double *output, int length, double *a, double b) \{}
\text{ int } i = \text{blockIdx.x*blockDim.x + threadIdx.x;}
\text{ if}(i < \text{length})
\text{ output[i] = input[i] \times b \times a[input[i]];}
\text{\}}
\]

Transformed Code

\[
\text{val } a = \text{Vector[Double]}(n) \\
\text{val } b = 3.28 \\
\text{val } c = (0::n) \{ \text{DeliteGPUFunc(\{i \mapsto i \times b \times a(i), 0, List(a,b) \})} \}
\]
Experimental Setup

- 4 Different implementations
 - OptiML+Delite
 - MATLAB (Original, GPU, Jacket)

- System:
 - Intel Nehalem
 - 2 sockets, 8 cores, 16 threads
 - 24 GB DRAM
 - NVIDIA GTX 275 GPU
Benchmark Applications

- 6 machine learning applications
 - Gaussian Discriminant Analysis (GDA)
 - Generative learning algorithm for probability distribution
 - Loopy Belief Propagation (LBP)
 - Graph based inference algorithm
 - Naïve Bayes (NB)
 - Supervised learning algorithm for classification
 - K-means Clustering (K-means)
 - Unsupervised learning algorithm for clustering
 - Support Vector Machine (SVM)
 - Optimal margin classifier using SMO algorithm
 - Restricted Boltzmann Machine (RBM)
 - Stochastic recurrent neural network
Performance Study (CPU)

- **GDA**
 - 1 CPU: 1.0
 - 2 CPU: 1.7
 - 4 CPU: 1.8
 - 8 CPU: 1.9

- **Naive Bayes**
 - 1 CPU: 1.0
 - 2 CPU: 2.0
 - 4 CPU: 3.4
 - 8 CPU: 4.6

- **K-means**
 - 1 CPU: 1.0
 - 2 CPU: 1.8
 - 4 CPU: 3.6
 - 8 CPU: 6.3

- **SVM**
 - 1 CPU: 1.0
 - 2 CPU: 3.1
 - 4 CPU: 4.4
 - 8 CPU: 5.5

- **LBP**
 - 1 CPU: 1.0
 - 2 CPU: 1.9
 - 4 CPU: 3.4
 - 8 CPU: 5.2

- **RBM**
 - 1 CPU: 1.0
 - 2 CPU: 1.7
 - 4 CPU: 1.8
 - 8 CPU: 1.9

- **Naive Bayes**
 - 1 CPU: 0.1
 - 2 CPU: 0.1
 - 4 CPU: 0.1
 - 8 CPU: 0.1

- **RBM**
 - 1 CPU: 1.0
 - 2 CPU: 1.9
 - 4 CPU: 3.4
 - 8 CPU: 4.7

- **DELITE**
- **Parallelized MATLAB**

Normalized Execution Time

Bar charts show the normalized execution time for different algorithms (GDA, Naive Bayes, K-means, SVM, LBP, RBM) across 1, 2, 4, and 8 CPU scenarios, comparing DELITE and Parallelized MATLAB.
Performance Study (GPU)

Normalized Speedup

- DELITE
- MATLAB (GPU)
- MATLAB (Jacket GPU)

Speedup relative to single core execution time on Nehalem system
Domain Specific Optimizations

Best Effort

Normalized Execution Time

K-means
- Best-effort (1.2% error)
- Best-effort (4.2% error)
- Best-effort (7.4% error)

SVM
- Relaxed SVM (+ 1% error)

Speedup relative to 8 core execution time on Nehalem system

Relaxed Dependencies

Normalized Execution Time

SVM
- Relaxed SVM (+ 1% error)
Conclusion

- Using Domain Specific Languages (DSLs) is a potential solution for heterogeneous parallelism
 - OptiML is a proof-of-concept DSL for ML
 - Productive, portable, performant
 - Delite is a framework for building DSLs and a parallel runtime
 - Simplifies developing implicitly parallel DSLs
 - Maps DSL to heterogeneous devices
 - Performs GPU specific optimizations and automatic code generation
- Experimental results show that OptiML+Delite outperforms various MATLAB implementations