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Abstract
Industry is increasingly turning to reconfigurable architec-
tures like FPGAs and CGRAs for improved performance and
energy efficiency. Unfortunately, adoption of these architec-
tures has been limited by their programming models. HDLs
lack abstractions for productivity and are difficult to target
from higher level languages. HLS tools are more productive,
but offer an ad-hoc mix of software and hardware abstrac-
tions which make performance optimizations difficult.

In this work, we describe a new domain-specific language
and compiler called Spatial for higher level descriptions of
application accelerators. We describe Spatial’s hardware-
centric abstractions for both programmer productivity and
design performance, and summarize the compiler passes
required to support these abstractions, including pipeline
scheduling, automatic memory banking, and automated de-
sign tuning driven by active machine learning. We demon-
strate the language’s ability to target FPGAs and CGRAs
from common source code. We show that applications writ-
ten in Spatial are, on average, 42% shorter and achieve amean
speedup of 2.9× over SDAccel HLS when targeting a Xilinx
UltraScale+ VU9P FPGA on an Amazon EC2 F1 instance.
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1 Introduction
Recent trends in technology scaling, the availability of large
amounts of data, and novel algorithmic breakthroughs have
spurred accelerator architecture research. Reconfigurable
architectures like field-programmable gate arrays (FPGAs)
and coarse-grain reconfigurable architectures (CGRAs) have
received renewed interest from academic researchers and
industry practitioners alike, primarily due to their poten-
tial performance and energy efficiency benefits over con-
ventional CPUs. FPGAs are now being used to accelerate
web search in datacenters at Microsoft and Baidu [29, 34],
Amazon now offers FPGA instances as part of AWS [4], and
Intel has announced products like in-package Xeon-FPGA
systems [18] and FPGA-accelerated storage systems [21].
Similarly, several recent research prototypes [17, 30–32, 40]
and startups [6, 7] have explored various kinds of CGRAs at
different granularities. Growing use of such reconfigurable
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architectures has made them more available to programmers
now than ever before.

Reconfigurable devices are able to accelerate applications,
in part, by exploiting multiple levels of nested parallelism
and data locality with custom data pipelines and memory
hierarchies. Unfortunately, the same features that make re-
configurable architectures efficient also make them much
more complex to program. An accelerator design must ac-
count for the timing between pipelined signals and the phys-
ically limited compute and memory resources available on
the target device. It must also manage partitioning of data
between local scratchpads and off-chip memory to achieve
good data locality. The combination of these complexities
leads to intractable accelerator design spaces [13].
These challenges have caused programmability to be a

key limiting factor to widespread adoption of CGRAs and
FPGAs [10, 15]. The space of CGRA programmability is frag-
mented with incompatible, architecture-specific program-
ming models. The current state of the art in programming
FPGAs involves using a combination of vendor-supplied IP
blocks, hand-tuned hardware modules written using either
low-level RTL or high-level synthesis tools, and architecture-
specific glue logic to communicate with off-chip components
such as DRAM. Hardware description languages (HDLs) like
Verilog and VHDL are designed for explicit specification
of hardware, placing the burden on the user to solve the
complexities of implementing their algorithm in hardware.
High-level synthesis (HLS) tools like SDAccel [42], Vi-

vado HLS [3], and Intel’s OpenCL SDK [5] raise the level
of abstraction compared to HDLs significantly. For exam-
ple, HLS tools allow programmers to write accelerator de-
signs in terms of untimed, nested loops and offer library
functions for common operations like data transfer between
a CPU host and the FPGA. However, existing commercial
HLS tools have all been built on top of software languages
like C, OpenCL, and Matlab. These software languages have
been built to target instruction-based processors like CPUs
and GPUs. Consequently, although existing HLS tools raise
the level of abstraction for targeting reconfigurable archi-
tectures, they do so with an ad-hoc, often underspecified
mix of software and hardware abstractions. For instance,
while SDAccel can convert nested loops into hardware state
machines, the language has no notion of the architecture’s
memory hierarchy and cannot pipeline loops at arbitrary
nesting levels [2]. Programmers must keep in mind that,
despite the software programming abstractions, they must
employ hardware, not software, optimization techniques.
This makes it challenging to write HLS code which produces
fully optimized designs [26].
In this work, we first summarize high-level language ab-

stractions required to create a new high-level synthesis lan-
guage from the ground up, including syntax for managing
memory, control, and accelerator-host interfaces on a re-
configurable architecture. We suggest that this “clean slate”

1 // Custom floating point format
2 // 11 mantissa, 5 exponent bits
3 type Half = FltPt[11,5]
4
5 def main(args: Array[String]) {
6
7 // Load data from files
8 val a: Matrix[Half] = loadMatrix[Half](args(0))
9 val b: Matrix[Half] = loadMatrix[Half](args(1))
10
11 // Allocate space on accelerator DRAM
12 val A = DRAM[Half](a.rows,a.cols)
13 val B = DRAM[Half](b.rows,b.cols)
14 val C = DRAM[Half](a.rows,b.cols)
15
16 // Create explicit design parameters
17 val M = 128 (64, 1024) // Tile size for output rows
18 val N = 128 (64, 1024) // Tile size for output cols
19 val P = 128 (64, 1024) // Tile size for common
20 val PAR_K = 2 (1, 8) // Unroll factor of k
21 val PAR_J = 2 (1, 16) // Unroll factor of j
22
23 // Transfer data to accelerator DRAM
24 sendMatrix(A, a)
25 sendMatrix(B, b)
26
27 // Specify the accelerator design
28 Accel {
29 // Produce C in M x N tiles
30 Foreach(A.rows by M, B.cols by N){ (ii,jj) =>
31 val tileC = SRAM[Half](M, N)
32
33 // Combine intermediates across common dimension
34 MemReduce(tileC)(A.cols by P){ kk =>
35 // Allocate on-chip scratchpads
36 val tileA = SRAM[Half](M, P)
37 val tileB = SRAM[Half](P, N)
38 val accum = SRAM[Half](M, N)
39
40 // Load tiles of A and B from DRAM
41 tileA load A(ii::ii+M, kk::kk+P) // M x P
42 tileB load B(kk::kk+P, jj::jj+N) // P x N
43
44 // Combine intermediates across a chunk of P
45 MemReduce(accum)(P by 1 par PAR_K){ k =>
46 val partC = SRAM[Half](M, N)
47 Foreach(M by 1, N by 1 par PAR_J){ (i,j) =>
48 partC(i,j) = tileA(i,k) * tileB(k,j)
49 }
50 partC
51 // Combine intermediates with element-wise add
52 }{(a,b) => a + b }
53 }{(a,b) => a + b }
54
55 // Store the tile of C to DRAM
56 C(ii::ii+M, jj::jj+N) store tileC
57 }
58 }
59
60 // Save the result to another file
61 saveMatrix(args(2), getMatrix(C))
62 }

Figure 1. Basic parameterized matrix-matrix multiplication
(C = A · B) implemented in Spatial.

approach to high-level synthesis language design leads to
a language which is semantically cleaner when targeting
reconfigurable architectures, particularly when optimizing
for data locality and parallelism. These abstractions help pro-
grammer productivity and allow both the user and compiler
to more easily optimize designs for improved performance.
We then describe a new domain specific language (DSL)

and compiler framework called Spatial which implements
these abstractions to support higher level, performance ori-
ented hardware accelerator design. Figure 1 shows an ex-
ample of a basic implementation of matrix multiplication in
Spatial. As this figure shows, Spatial code is like existing HLS
languages in that programs are untimed and the language
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encourages accelerator designs to be expressed in terms of
nested loops. However, unlike existing HLS tools, Spatial
gives users more explicit control over the memory hierarchy
through a library of on-chip and off-chip memory templates
(e.g. the DRAM and SRAM in Figure 1). Spatial automatically
pipelines arbitrarily nested loops, and banks, buffers, and
duplicates memories for the user based on parallel access
patterns by default. This is in contrast to modern HLS tools,
which largely rely on the user to add explicit pragmas to
their code in order make these optimizations. Spatial also
supports tuning of parameterized designs via automated de-
sign space exploration (DSE). Unlike prior approaches [22]
which use variance-prone heuristic random search, Spatial
employs an active machine learning framework called Hy-
perMapper [11] to drive exploration. This tuning allows a
single accelerator design to be quickly ported across target
architectures and vendors with ease.

When targeting FPGAs, Spatial generates optimized, syn-
thesizable Chisel code along with C++ code which can be
used on a host CPU to administrate initialization and execu-
tion of the accelerator on the target FPGA. Spatial currently
supports Xilinx Ultrascale+ VU9P FPGAs on Amazon’s EC2
F1 Instances, Xilinx Zynq-7000 andUltrascale+ ZCU102 SoCs,
and Altera DE1 and Arria 10 SoCs. The constructs in Spa-
tial are general across reconfigurable architectures, meaning
Spatial programs can also be used to target CGRAs. In this pa-
per, we demonstrate this by targeting our recently proposed
Plasticine CGRA [32].

The contributions of this paper are as follows:
• We discuss the abstractions required to describe target-
agnostic accelerator designs for reconfigurable archi-
tectures (Section 2). We then describe Spatial’s imple-
mentation of these constructs (Section 3) and the opti-
mizations that these abstraction enables in the Spatial
compiler (Section 4).
• We describe an improvedmethod of fast, automated de-
sign parameter space exploration using HyperMapper
(Section 4.6). This approach is evaluated in Section 5.
• We evaluate Spatial’s ability to efficiently express a
wide variety of applications and target multiple archi-
tectures from the same source code. We demonstrate
Spatial targeting two FPGAs and the Plasticine CGRA.
We quantitatively compare Spatial to SDAccel on the
VU9P FPGA on a diverse set of benchmarks (Section 5),
showing a geometric mean speedup of 2.9× with 42%
less code. We provide a qualitative comparison of Spa-
tial to other related work in Section 6.

2 Language Criteria
It is critical for a language with the purpose of abstracting
hardware design to strike the right balance between high-
level constructs for improving programmer productivity and

low-level syntax for tuning performance. Here, we moti-
vate our discussion of Spatial by outlining requirements for
achieving a good balance between productivity and achiev-
able performance.

2.1 Control
For most applications, control flow can be expressed in ab-
stract terms. Data-dependent branching (e.g. if-statements)
and nested loops are found in almost all applications, and
in the common case these loops have a statically calculable
initiation interval. These loops correspond to hierarchical
pipelines which can be automatically optimized by the com-
piler in the majority of cases. The burden for specifying these
control structures should therefore fall on the compiler, with
the user intervening only when the compiler lacks informa-
tion to optimize the loop schedule.

2.2 Memory Hierarchy
On most reconfigurable architectures, there are at least three
levels ofmemory hierarchy: off-chip (DRAM), on-chip scratch-
pad (e.g. “block RAM” on FPGAs), and registers. Unlike CPUs,
which present their memory as a uniformly accessible ad-
dress space, reconfigurable architectures require program-
mers to explicitly manage the memory hierarchy. Previous
languages like Sequoia [16] have demonstrated the benefits
of explicit notions of memory hierarchy to programming
language design. Moreover, loop unrolling and pipelining
are essential for performance and area utilization, but these
optimizations require on-chip memories to be partitioned,
banked, and buffered to supply the bandwidth necessary for
concurrent accesses. These decisions are made by statically
analyzing memory access patterns with respect to loop it-
erators. The accelerator design language should therefore
give the user a view of the target memory hierarchy and
should include notions of loop iterators to enable automatic
memory partitioning, banking, and buffering optimizations
for on-chip bandwidth.

In addition to on-chip memory management, accelerator
designs must also explicitly administer transfers between off-
chip and on-chip memories. This entails creating a soft mem-
ory controller which manages the off-chip memory. These
memory controller implementations vary widely across dif-
ferent target architectures and vendors. However, common
across these architectures is the need to optimize the mem-
ory controller based on access pattern. Unpredictable, data-
dependent requests require more specialized memory con-
troller logic than predictable, linear accesses. Instead of fo-
cusing on target-specific details, the language should allow
users to focus on optimizing each transfer based on its access
pattern. The accelerator language should therefore abstract
these transfers as much as possible, while also giving con-
structs which specialize based on access patterns.
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2.3 Host Interfaces
Spatial architectures are commonly used as offload applica-
tion accelerators. In this execution model, the host generally
allocates memory, prepares data structures, and interfaces
with larger heterogeneous networks to receive and send data.
Once data is prepared, the host invokes the accelerator and
either waits for completion (“blocking” execution) or inter-
acts with the perpetually running accelerator in a polling or
interrupt manner (“non-blocking” execution). While man-
agement of communication and accelerator execution are
commonly supported, the associated libraries and function
calls vary widely across platforms and vendors, making code
difficult to port or compare. For communication with the
CPU host, a higher level language for accelerator design
should provide constructs which abstract away the target
architecture as much as possible.

2.4 Design Space Exploration
As with any hardware design, accelerator design spaces can
be extremely large and cumbersome to explore. While mak-
ing optimizations like loop pipelining and memory banking
automatic help to improve productivity, these transforma-
tions leave the compiler with numerous choices about how
to allocate resources. These decisions can accumulate large
performance/area tradeoff spaces which combine exponen-
tially with application complexity. In a fixed implementa-
tion of general matrix multiplication, there is a large design
space that includes the dimensions of on-chip tiles that hold
portions of the full matrices and decisions about the paral-
lelizations of loops that iterate over tiles as well as loops
that iterate within these tiles. The parameters shown in lines
17 – 21 of Figure 1 expose just a few of these many design
space parameters. Previous work [22] has shown how mak-
ing the compiler aware of design parameters like pipelining,
unrolling factors, and tile sizes can be used to speed up and
automate parameter space exploration. Abstract hardware
languages should therefore include both language and com-
piler support for design space parameters.

3 The Spatial Language
Spatial is a domain specific language for the design of accel-
erators implemented on reconfigurable spatial architectures,
including FPGAs and CGRAs. The aim of the language is to
simplify the accelerator design process, allowing domain ex-
perts to quickly develop, test, optimize, and deploy hardware
accelerators, either by directly implementing high-level hard-
ware designs or by targeting Spatial from another, higher
level language.
In this section, we describe the abstractions Spatial in-

cludes to balance productivity and performance-oriented
detail. While space does not permit a full specification of the
language, Table 1 provides an overview of the core subset of
Spatial’s syntax.

3.1 Control Structures
Spatial provides a mix of control structures which help users
to more succinctly express their programs while also allow-
ing the compiler to identify parallelization opportunities.
These structures can be arbitrarily nested without restric-
tion, allowing users to easily define hierarchical pipelines
and nested parallelism. Table 1a provides a list of some of
the control structures in the language. In addition to Foreach

loops and state machines, Spatial also borrows ideas from
parallel patterns [35, 39] to provide succinct functional syn-
tax for reductions. While it is possible to express reductions
in a purely imperative way, Reduce informs the compiler that
the reduction function can be considered associative. Simi-
larly, reduction across a series of memories using MemReduce

exposes more levels of parallelism than an imperative imple-
mentation. For example, in Figure 1, the MemReduce on line
45 allows the compiler to parallelize over parameter PAR_K.
This will result in multiple tileC tiles being populated in
parallel, followed by a reduction tree to combine them into
the accumulator accum.

Foreach, Reduce, and MemReduce can be parallelized by
setting parallelization factors on their respective counters.
When loop parallelization is requested, the compiler analyzes
whether loop parallelization guarantees equivalent behavior
to sequential execution. If this check fails, the compiler will
issue an error. Spatial guarantees that a parallelized body will
complete in its entirety before the next parallelized iteration
is started, but makes no guarantees about the relative timing
of operations across a single batch of unrolled iterations.

The bodies of Spatial control structures are untimed. The
compiler automatically schedules operations, with the guar-
antee that functional behavior will not be changed. The
schedule selected by the compiler can be pipelined, sequen-
tial, or streaming execution. In pipelined execution, the exe-
cution of loop iterations are overlapped. In innermost loops,
the degree of overlap is based on the controller’s average
initiation interval. In outer loops, the amount of overlap is de-
termined by the controller’s “depth”. Depth is defined as the
maximum number of outer loop iterations a stage is allowed
to execute before its consumer stages begin execution.
In sequential execution, a single iteration of a loop body

is executed in its entirety before the next iteration begins.
Sequential scheduling is equivalent to pipelining with the
initiation interval equal to the loop body’s latency, or, for
outer controllers, a depth of 1. Streaming execution overlaps
stages further by allowing each inner controllers to run asyn-
chronously when inputs are available. Streaming is only a
well-defined control scheme when communication between
controllers is done through streaming interfaces or queues.

3.2 Memories
Spatial offers a variety of memory templates that enable the
user to abstractly but explicitly control allocation of data
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Table 1. A subset of Spatial’s syntax. Square brackets (e.g. [T]) represent a template’s type parameter. Parameters followed
by a ‘+’ denote arguments which can be given one or more times, while a ‘*’ denotes that an argument is optional. DRAMs,
Foreach, Reduce, and MemReduce can all have arbitrary dimensions.

(a) Control Structures

min* until max by stride* par factor*
A counter over [min,max) ([0,max) if min is unspecified).
stride: optional counter stride, default is 1
factor: optional counter parallelization, default is 1
FSM(init){continue}{action}{next}
An arbitrary finite state machine, similar to a while loop.
init: the FSM’s initial state
continue: the “while” condition for the FSM
action: arbitrary expression, executed each iteration
next: function calculating the next state
Foreach(counter+){body}
A parallelizable for loop.
counter: counter(s) defining the loop’s iteration domain
body: arbitrary expression, executed each loop iteration
Reduce(accum)(counter+){func}{reduce}
A scalar reduction loop, parallelized as a tree.
accum: the reduction’s accumulator register
counter: counter(s) defining the loop’s iteration domain
func: arbitrary expression which produces a scalar value
reduce: associative reduction between two scalar values
MemReduce(accum)(counter+){func}{reduce}
Reduction over addressable memories.
accum: an addressable, on-chip memory for accumulation
counter: counter(s) defining the loop’s iteration domain
func: arbitrary expression returning an on-chip memory
reduce: associative reduction between two scalar values
Stream(*){body}
A streaming loop which never terminates.
body: arbitrary expression, executed each loop iteration
Parallel{body}
Overrides normal compiler scheduling. All statements
in the body are instead scheduled in a fork-join fashion.
body: arbitrary sequence of controllers
DummyPipe{body}
A “loop” with exactly one iteration.
Inserted by the compiler, generally not written explicitly.
body: arbitrary expression

(b) Optional Scheduling Directives

Sequential.(Foreach|Reduce|MemReduce)
Sets loop to run sequentially.
Pipe(ii*).(Foreach|Reduce|MemReduce)
Sets loop to be pipelined.
ii: optional overriding initiation interval
Stream.(Foreach|Reduce|MemReduce)
Sets loop to be streaming.

(c) Shared Host/Accelerator Memories

ArgIn[T]
Accelerator register initialized by the host
ArgOut[T]
Accelerator register visible to host after accelerator execution
HostIO[T]
Accelerator register the host may read and write at any time.
DRAM[T](dims+)
Burst-addressable, host-allocated off-chip memory.

(d) External Interfaces

StreamIn[T](bus)
Streaming input from a bus of external pins.
StreamOut[T](bus)
Streaming output to a bus of external pins.

(e) Host Interfaces

Accel{body}
A blocking accelerator design.
Accel(*){body}
A non-blocking accelerator design.

(f) Design Space Parameters

default (min,max)
default (min,stride,max)

A compiler-aware design parameter with given default value.
DSE explores the range [min, max] with optional stride.

across an accelerator’s heterogeneous memory. The Spatial
compiler is aware of all of these memory types and is able
to automatically optimize each of them.
Spatial’s “on-chip” memories represent the creation of

statically sized, logical memory spaces. Supported memory
types include read-only lookup-tables (LUTs), scratchpads
(SRAM), line buffers (LineBuffer), fixed size queues and stacks
(FIFO and LIFO), registers (Reg), and register files (RegFile).
These memories are always allocated using resources on the
accelerator, and by default are not accessible by the host.
While each memory is guaranteed to appear coherent to the
programmer, the number and type of resources used to im-
plement each memory is not restricted. With the exception
of LUTs and Regs with explicit initial values, the contents
of a memory is undefined upon allocation. These rules give

the Spatial compiler maximum freedom to optimize mem-
ory access latency and resource utilization in the context of
the entire application. Depending upon access patterns, the
compiler may automatically duplicate, bank, or buffer the
memory, provided the behavior of the final logical memory
is unchanged.
“Shared” memories are allocated by the host CPU and

accessible by both the host and the accelerator. These mem-
ories are typically used in the offload model to transfer data
between the host and the accelerator. DRAM templates rep-
resent the slowest, largest level of the hierarchy. To help
users optimize memory controllers, DRAM is read and written
using explicit transfers to and from on-chip memories. These
transfers are specialized for predictable (load and store) and
data-dependent (scatter and gather) access patterns.
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3.3 Interfaces
Spatial offers several specialized interfaces for communica-
tion with the host and other external devices connected to
the accelerator. Like memory templates, Spatial is capable of
optimizing operations on these interfaces.

ArgIn, ArgOut, and HostIO are specialized registers with
memorymappings on the CPU host. ArgInsmay only bewrit-
ten by the host during device initialization, while ArgOuts

can only be read, not written, by the host. HostIO can be read
or written by the host at any time during accelerator exe-
cution. Additionally, scalars, including DRAM sizes, implicitly
create ArgIn instances when used within an Accel scope. For
instance, in Figure 1, the dimensions of matrices A, B, and C

are passed to the accelerator via implicit ArgIns since they
are used to generate loop bounds (e.g. A.rows, B.cols).

StreamIn and StreamOut in Spatial are used to create con-
nections to external interfaces. Streams are created by speci-
fying a bus of input/output pins on the target device. Con-
nection to external peripherals is done in an object-oriented
manner. Every available Spatial target defines a set of com-
monly used external buses which can be used to allocate a
StreamIn or StreamOut.
Spatial allows users to write host and accelerator code

in the same program to facilitate communication between
the two devices. The language’s data structures and opera-
tions are classified as either “acceleratable” or “host”; only
acceleratable operations have a defined mapping onto spatial
architectures. Spatial makes this distinction in order to give
users structure their algorithm in a way that is best for a
reconfigurable architecture. Programs which heavily rely
on dynamic memory allocation, for example, generally do
not perform well on reconfigurable architectures, but can
often be transformed at the algorithm level to achieve better
performance.
Spatial programs explicitly partition work between the

host and the accelerator using the Accel scope. As shown in
Table 1e, these calls are specified as either blocking or non-
blocking. Figure 1 shows an example of a blocking call, in
which the product of two matrices is computed in the accel-
erator and then passed to the host only after it is completed.
All operations called within this scope will be allocated to
the targeted hardware accelerator, while all outside will be
allocated to the host. Because of this, all operations within
the Accel scope must be acceleratable.
Operations on the host include allocation of memory

shared between the host and accelerator, transferring data to
and from the accelerator, and accessing the host’s file system.
Arrays are copied to and from shared memory through DRAM

using operations like sendMatrix and getMatrix shown in
Figure 1. Scalars are transferred via ArgIn and ArgOut using
setArg and getArg.
After Spatial compilation, host operations are code gen-

erated to C++. From the host’s perspective, the Accel scope

1 def FIR_Filter(args: Array[String]) {
2 val input = StreamIn[Int](target.In)
3 val output = StreamOut[Int](target.Out)
4 val weights = DRAM[Int](32)
5 val width = ArgIn[Int]
6 val P = 16 (1,1,32)
7 // Initialize width with the first console argument
8 setArg(width, min(32, args(0).to[Int]) )
9 // Transfer weights from the host to accelerator
10 sendArray(weights, loadData[Int]("weights.csv"))
11
12 Accel {
13 val wts = RegFile[Int](32)
14 val ins = RegFile[Int](32)
15 val sum = Reg[Int]
16 // Load weights from DRAM into local registers
17 wts load weights(0::width)
18
19 Stream(*) { // Stream continuously
20 // Shift in the most recent input
21 ins <<= input
22
23 // Create a reduce-accumulate tree with P inputs
24 Reduce(sum)(0 until width par P){i =>
25 wts(i) * ins(i)
26 }{(a,b) => a + b }
27
28 // Stream out the computed average
29 output := sum / width
30 }
31 }
32 }

Figure 2. A finite impulse response (FIR) filter.

doubles as a black box for generating target-specific library
calls to run the accelerator. This syntax serves to completely
abstract the tedious, target-specific details of initializing and
running the accelerator.
Spatial currently assumes that the system has one target

reconfigurable architecture. If the program defines multiple
Accel scopes, these are loaded and run sequentially in decla-
ration order. However, this constraint can easily be relaxed
in future work.

3.4 Parameters
Parameters in Spatial are created using the syntax shown
in Table 1f. Since each parameter must have a fixed value
by the time the compiler generates code, the supplied range
must be statically computable. Parameters can be used to
specify the dimensions of addressable on-chip memories and
DRAMs. They can also be used when creating counters to
specify a parameterized step size or parallelization factor, or
when specifying the pipelining depth of outer controllers.
An application’s implicit and explicit application parameters
together define a design space which the compiler can later
automatically explore.

3.5 Examples
We conclude discussion of the Spatial language with two
examples. Figure 2 shows a streaming implementation of
a finite impulse response (FIR) filter. This example demon-
strates how, when using Stream(*), Spatial’s semantics are
similar to other dataflow-oriented streaming languages. The
body of the loop on line 24 is run each time a valid element
appears at the StreamIn input. Spatial pipelines this body to
maximize its throughput.
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1 def Merge_Sort(offchip: DRAM[Int], offset: Int) {
2 val N = 1024 // Static size of chunk to sort
3 Accel {
4 val data = SRAM[Int](N)
5 data load offchip(offset::N+offset)
6
7 FSM(1){m => m < N}{ m =>
8 Foreach(0 until N by 2*m){ i =>
9 val lower = FIFO[Int](N/2).reset()
10 val upper = FIFO[Int](N/2).reset()
11 val from = i
12 val end = min(i + 2*m - 1, N) + 1
13
14 // Split data into lower and upper FIFOs
15 Foreach(from until i + m){ x =>
16 lower.enq(data(x))
17 }
18 Foreach(i + m until end){ y =>
19 upper.enq(data(y))
20 }
21
22 // Merge of the two FIFOs back into data
23 Foreach(from until end){ k =>
24 val low = lower.peek() // Garbage if empty
25 val high = upper.peek() // Garbage if empty
26 data(k) = {
27 if (lower.empty) { upper.deq() }
28 else if (upper.empty) { lower.deq() }
29 else if (low < high) { lower.deq() }
30 else { upper.deq() }
31 }
32 }
33 }
34 }{ m => 2*m /* Next state logic */ }
35
36 offchip(offset::offset+N) store data
37 }
38 }

Figure 3. Part of a design for in-place merge sort.

While basic FIR filters are simple to write and tune even in
HDLs, Spatial makes expanding upon simple designs easier.
The number of weights and taps in this example can be
set at device initialization, without having to resynthesize
the design. Additionally, the number of elements combined
in parallel in the filter is defined as a parameter. Design
space exploration can automatically tune the design for the
smallest area or lowest latency.
Figure 3 shows a simple implementation of a fixed size

merge sort in Spatial. Here, data is loaded into on-chip scratch-
pad, sorted, and then stored back into main memory. The
language’s distinction between on-chip and off-chip mem-
ory types makes writing and reasoning about tiled designs
like this one much more natural. This implementation uses a
statically sized SRAM and two FIFOs to split and order progres-
sively larger size chunks of the local data. The chunk size is
determined by the outermost loop on line 8, and increments
in powers of two. This behavior is best expressed in Spatial
as an FSM.

4 The Spatial Compiler
The Spatial compiler provides source-to-source translations
from applications in the Spatial language to synthesizable
hardware descriptions in Chisel RTL [9]. In this section, we
describe the compiler’s intermediate representation and its
key passes, as summarized in Figure 4. Apart from chisel
generation, these passes are common to targeting both FP-
GAs and the Plasticine CGRA. Details of targeting Plasticine
are discussed in prior work [32].

4.1 Intermediate Representation
Spatial programs are internally represented in the compiler
as a hierarchical dataflow graph (DFG). Nodes in this graph
represent control structures, data operations, and memory
allocations, while edges represent data and effect dependen-
cies. Nesting of controllers directly translates to the hierarchy
in the intermediate representation. Design parameters are
kept as graph metadata, such that they can be independently
updated without changing the graph itself.

When discussing DFG transformations and optimizations,
it is often useful to think about the graph as a controller/ac-
cess tree. Figure 5 shows an example of one such controller
tree for the memory tileB in the Spatial code example in
Figure 1. Note that transfers between on-chip and off-chip
memory expand to a control node which linearly accesses
the on-chip memory, in this case by iterators e and f. This
tree abstracts away most primitive operations, leaving only
relevant controller hierarchy and the memory accesses for a
specific memory.
Within the acceleratable subset of Spatial, nodes are for-

mally separated into three categories: control nodes, memory
allocation nodes, and primitive nodes. Control nodes rep-
resent state machine structures like Foreach and Reduce de-
scribed in Section 3.1. Primitive nodes are operations which
may consume, but never produce, control signals, including
on-chip memory accesses. Primitive nodes are further bro-
ken down into “physical” operations requiring resources and
“ephemeral” operations which are only used for bookkeeping
purposes in the compiler. For example, bit selects and group-
ing of words into structs require no hardware resources but
are used to track necessary wires in the generated code.

4.2 Control Insertion
To simplify reasoning about control signals, Spatial requires
that control nodes do not contain both physical primitive
nodes and other control nodes. The exception to this rule is
conditional if statements, which can be used in the same
scope as primitives as long as they contain no control nodes
but conditionals themselves. This requirement is satisfied by
a DFG transformation which inserts DummyPipe control nodes
around primitive logic in control bodies which also contain
control nodes. The DummyPipe node is a bookkeeping control
structure which is logically equivalent to a loop with exactly
one iteration. Thereafter, control nodes with primitive nodes
are called “inner” control nodes, while controllers which
contain other nested controllers are called “outer” nodes.

4.3 Controller Scheduling
After controller insertion, the compiler will then schedule the
operations within each controller. By default, the compiler
will always attempt to pipeline loops regardless of nesting
level. The behavior of the compiler’s scheduler can be over-
ridden by the user using the directives listed in Table 1b.
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Figure 4. A summary of the passes in the Spatial compiler for targeting FPGAs.
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Figure 5. The control/access tree for the SRAM tileB in the
matrix multiply example in Figure 1.

Inner pipeline schedules are based on their initiation inter-
val. The compiler first collects resource initiation intervals
for each primitive node in the given controller based on an
internal, target-dependent lookup table. Most primitive op-
erations are pipelined for a resource initiation interval of
1. The compiler then calculates all loop carried dependen-
cies within the pipeline based on the dataflow graph. For
non-addressable memories, the total initiation interval is
the maximum of path lengths between all dependent reads
and the writes. For addressable memories, the path length
of loop carried dependencies is also multiplied by the dif-
ference in write and read addresses. If the addresses are
loop-independent, the initiation interval is the path length
if they may be equal, and 1 if they are provably not equal. If
the distance between the addresses cannot be determined
statically, the initiation interval is infinite, meaning the loop
must be run sequentially. The total initiation interval is de-
fined as the maximum of the initiation intervals of all loop
carried dependencies and all resource initiation intervals.

The compiler also attempts to pipeline the bodies of outer
control nodes in a similar manner, but computes dataflow
scheduling in terms of inner control nodes and number of
stages rather than primitive nodes and cycles. For example,
the outer MemReduce in line 34 of Figure 1 contains 4 sub-
controllers: the load into tileA (line 41), the load into tileB

(42), the inner MemReduce (45), and an reduction stage com-
bining intermediate tiles (53). Based on data dependencies,
the compiler infers that the two loads can be run in parallel,

followed by the inner MemReduce and the tile reduction. It
will also determine that multiple iterations of this outer loop
can also be pipelined through these stages.

4.4 Memory Analysis
Loop parallelization only serves to improve performance
if there is sufficient on-chip bandwidth to feed the dupli-
cated computation. Spatial’s memory analysis banks and
buffers on-chip memories to maximize this available on-chip
read and write bandwidth. Memory banking, also called data
partitioning, is the process of dividing a memory’s address
space across multiple physical instances in order to create
additional ports for concurrent accesses within the same
controller. Partitioning is possible when the access patterns
are statically predictable and guaranteed to never conflict
access the same port/bank. While a single port can be time
multiplexed, this entirely negates the benefits of paralleliza-
tion by increasing the whole pipeline’s required initiation
interval. Note that while banking can trivially be achieved
by memory duplication, Spatial aims to also minimize the
total amount of memory resources.

Spatial leverages the memory partitioning strategy based
on conflict polytope emptiness testing described by Wang et.
al. [41]. We extend this strategy by accounting for random
access patterns and memory accesses across nested loops.
Random accesses are modeled as additional dimensions in
the conflict polytope as if they were additional loop iterators.
Spatial minimizes the number of random access symbols used
in this way by identifying affine combinations of random
values. For example, an access to a memory at address x and
x + 1 only requires one random variable, x , as the second is a
predictable, affine function of the first. Spatial also supports
banking per dimension to account for cases where only some
dimensions are accessed predictably.
Non-addressed memories like FIFOs and FILOs are mod-

eled as addressed memories. Each access to these memory
types is represented as a linear access of all loop iterators
around the memory access relative to the memory’s defi-
nition. Spatial forbids parallelization of outer loops around
non-addressed accesses, as this violates the guarantee of
equivalent behavior to sequential execution.

To handle multiple pipelined accesses across stages within
an outer loop, Spatial also automatically buffers on-chip
memories. Buffering creates multiple copies of the same
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memory for maintaining versions of the data across over-
lapped loop iterations. Without this optimization, pipeline
parallel accesses to the same memory across different stages
of a coarse-grain pipeline would not be able to run concur-
rently. See Appendix A.1 for details on how both banking
and buffering are computed.
For example, as shown in Figure 5, tileB has two paral-

lelized accesses, the load on line 42 and the read on line 48.
If all (implicit and explicit) parallelization factors are set to 2,
this corresponds to 4 accesses per loop. Spatial then builds
the access polytope corresponding to all accesses in each
loop, and determines the banking strategy that works for
both loops. In this example, this means the SRAM will be
banked such that each element within a 2x2 square will re-
side in a different physical bank to allow fully parallel access.
If the MemReduce on line 34 is pipelined, tileB will be double
buffered to protect the reads (line 48) in one iteration of the
outer loop from the writes (line 42) in the next iteration.

4.5 Area and Runtime Estimation
Spatial evaluates a given set of parameters by running a pair
of estimation passes to approximate the area and runtime
of the application. These passes are driven by analytical
resource and runtime models similar to those used in our
prior work on the Delite Hardware Definition Language
(DHDL) [22], but Spatial expands this approach to account
for streaming throughput, arbitrary control flow, and finite
state machines. Both runtime and area utilization models are
built from a set of about 2000 one-time characterization runs
on each target platform.

4.6 Design Space Exploration
The scheduling and memory banking options identified by
the compiler, together with loop parallelization and tile size
parameters, forms a design space for the application. The
design tuning pass is an optional compiler pass which allows
for fast exploration of this design space in order to make
area/runtime design tradeoffs. When design tuning is en-
abled, it repeatedly picks design points and evaluates them
by rerunning the control scheduling, memory analysis, and
estimation analysis passes. The output from this search is a
single set of parameters from the Pareto frontier.
Unfortunately, application design spaces tend to be ex-

tremely large, and exhaustive search on an entire space is of-
ten infeasible. Of the benchmarks discussed in Section 5, only
BlackScholes has a relatively small space of about 80, 000
points. While this space can be explored exhaustively by Spa-
tial in a few minutes, other spaces are much larger, spanning
106 to 1010 points and taking hours or days to exhaustively
search. For example, even with the few explicit design param-
eters exposed in the code in Figure 1, when combined with
implicit pipelining and parallelization parameters, this code
already has about 2.6 × 108 potential designs. DHDL [22]
employed random search after heuristic pruning, reducing

the total space by two to three orders of magnitude. However,
this approach has high variance on larger design spaces and
may inadvertently prune desirable points.
To reduce the variance on larger design spaces, Spatial’s

design space exploration flow integrates an active learning-
based autotuner called HyperMapper [11, 27, 36]. HyperMap-
per is a multi-objective derivative-free optimizer (DFO), and
has already been demonstrated on the SLAMBench bench-
marking framework [28]. HyperMapper creates a surrogate
model using a Random Forest regressor, and predicts the per-
formance over the parameter space. This regressor is initially
built using only few hundred random design point samples
and is iteratively refined in subsequent active learning steps.

4.7 Unrolling
Following selection of values for design parameters, Spatial
finalizes these parameters in a single graph transformation
which unrolls loops and duplicates memories as determined
by prior analysis passes. Reduce and MemReduce patterns
are also lowered into their imperative implementations, with
hardware reduction trees instantiated from the given reduc-
tion function. The two MemReduce loops in Figure 1, for
example, will each be lowered into unrolled Foreach loops
with explicitly banked memory accesses and explicitly du-
plicated multiply operations. The corresponding reduction
across tiles (lines 52 – 53) are lowered into a second stage of
the Foreach with explicit reduction trees matching the loop
parallelization.

4.8 Retiming
After unrolling, the compiler retimes each inner pipeline
to make sure data and control signals properly line up and
ensure that the target clock frequency can be met. To do
this, the compiler orders primitive operations within each
pipeline based on effect and dataflow order. This ordering is
calculated using a reverse depth first search along data and
effect dependencies. A second forward depth first search is
then used to minimize delays in reduction cycles. Based on
this ordering, the compiler then inserts pipeline and delay
line registers based on lookup tables which map each primi-
tive node to an associated latency. Dependent nodes which
have less than a full cycle of delay are kept as combinational
operations, with a register only being inserted after the last
operation. This register insertion maximizes the achievable
clock frequency for this controller while also minimizing the
required initiation interval.

4.9 Code Generation
Prior to code generation, the compiler first allocates register
names for every ArgIn, ArgOut, and HostIO. In the final pass
over the IR, the code generator then instantiates hardware
modules from a library of custom, parameterized RTL tem-
plates written in Chisel and infers and generates the logic
required to stitch them together. These templates include
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Table 2. Number of lines of code (LOC), area utilization, and runtime comparisons between SDAccel and Spatial on a single
VU9P FPGA. For reference, the first row lists the total number of FPGA resources available. LOC improvements are percent
improvements from SDAccel. The remaining improvement factors are calculated as (SDAccel/Spatial ).

LOC LUTs BRAM DSPs Time (ms)
Benchmark Data Sizes DSE size Capacity — 914400 1680 5640 —

BS
Black-Scholes
Option pricing

960,000 options 7.7 × 104
SDAccel 175 363368 550 290 6.18
Spatial 93 698885 493 945 3.79
Improvement 46.8% 0.52× 1.12× 0.31× 1.63×

GDA
Gaussian discriminant
analysis

1024 rows
96 dimensions 3.0 × 1010

SDAccel 73 356857 594 108 10.75
Spatial 64 378130 858 216 1.27
Improvement 12.3% 0.94× 0.69× 0.50× 8.48×

GEMM
Matrix multiply

A: 1024×1024
B: 1024×1024 2.6 × 108

SDAccel 110 341894 674 206 1207.26
Spatial 44 426295 500 798 878.45
Improvement 60.0% 0.80× 1.35× 0.26× 1.37×

KMeans
K-Means clustering

200 iterations
320×32-element points 2.1 × 106

SDAccel 146 356382 657 539 73.04
Spatial 81 369348 453 105 53.25
Improvement 44.5% 0.96× 1.45× 5.13× 1.37×

PageRank
Node ranking algorithm

DIMACS10 Chesapeake
10000 iterations 4.1 × 103

SDAccel 112 337102 549 17 2041.62
Spatial 77 418128 862 81 587.35
Improvement 31.2% 0.81× 0.64× 0.21× 3.48×

SW
Smith-Waterman
DNA alignment

256 base pairs 2.1 × 106
SDAccel 240 541617 547 12 8.67
Spatial 82 330063 470 9 0.61
Improvement 65.8% 1.64× 1.16× 1.33× 14.15×

TQ6
TPC-H Q6
Filter reduction

6,400,000 records 3.5 × 109
SDAccel 74 356978 548 15 18.61
Spatial 48 472868 574 393 13.97
Improvement 35.1% 0.75× 0.95× 0.04× 1.33×

Average Improvement 42.3% 0.87× 1.01× 0.42× 2.90×

state machines that manage communication between the
various control structures and primitives in the application,
as well as the banked and buffered memory structures and
efficient arithmetic operations. Finally, all generated hard-
ware is wrapped in a target-specific, parameterized Chisel
module that arbitrates off-chip accesses from the accelerator
with the peripheral devices on the target FPGA.

5 Evaluation
In this section, we evaluate Spatial by comparing program-
mer productivity and the performance of generated designs
to Xilinx’s commercial HLS tool, SDAccel. We then evaluate
the HyperMapper design tuning approach and demonstrate
Spatial’s advantages for portability across FPGAs and the
Plasticine CGRA.

5.1 FPGA Performance and Productivity
We first evaluate the FPGA performance and productivity
benefits of Spatial against SDAccel, a commercial C-based
programming tool fromXilinx for creating high-performance
accelerator designs. We use SDAccel in our study as it has
similar performance and productivity goals as Spatial, sup-
ports the popular OpenCL programming model, and per-
forms several optimizations related to loop pipelining, un-
rolling, and memory partitioning [42]. Baseline implementa-
tions of the benchmarks in Table 2 have been either obtained

from a public SDAccel benchmark suite from Xilinx [45],
or written by hand. Each baseline has then been manually
tuned by using appropriate HLS pragmas [43] to pick loop
pipelining, unrolling, and array banking factors, and to en-
able dataflow optimizations. Design points for Spatial are
chosen using the DSE flow described in Section 4.6.
We measure productivity by comparing number of lines

of source code used to describe the FPGA kernel, excluding
host code. We measure performance by comparing runtimes
and FPGA resources utilized for each benchmark on a Xil-
inx Ultrascale+ VU9P board with a fabric clock of 125 MHz,
hosted on an Amazon EC2 F1 instance. We generate FPGA
bitstreams targeting the VU9P architecture for each bench-
mark using both Spatial and SDAccel, and obtain resource
utilization data from the post place-and-route reports. We
then run and verify both designs on the FPGA and mea-
sure the execution times on the board. CPU setup code and
data transfer time between CPU and FPGA is excluded from
runtime measurements for both tools.
Table 2 shows the input dataset sizes and the full com-

parison between lines of source code, resource utilization,
and runtime of the benchmarks implemented in SDAccel
and Spatial. In terms of productivity, language constructs
in Spatial like load and store for transferring dense sparse
data from DRAM reduces code bloat and increases readabil-
ity. Furthermore, by implicitly inferring parameters such as
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parallelization factors and loop initiation intervals, Spatial
code is largely free of annotations and pragmas.

Spatial achieves speedups over SDAccel of 1.63× and 1.33×
respectively on BlackScholes and TPC-H Q6. Both bench-
marks stream data from DRAM through a deeply pipelined
datapath which is amenable to FPGA acceleration. Dataflow
support in SDAccel using the DATAFLOW pragma [44] and
streaming support in Spatial allows both tools to efficiently
accelerate suchworkloads. InK-Means, coarse-grained pipelin-
ing support allows Spatial to achieve roughly the same per-
formance as SDAccel using 1.5× fewer BRAMs. Specialized
DRAM scatter/gather support enables Spatial to achieve a
3.48× speedup on PageRank.

We see speedups of 8.48×, 1.37×, and 14.15× for compute-
heavy workloads GDA, GEMM, and SW, respectively. The
baseline for SW is implemented by Xilinx as a systolic array,
while the Spatial implementation uses nested controllers.
GEMM and GDA contain opportunities for coarse-grained
pipelining that are exploited within Spatial. GDA, for exam-
ple, contains an outer product operation, during which the
data in the same buffer is repeatedly accessed and reused.
While this operation can be pipelined with a preceding loop
producing the array, SDAccel’s DATAFLOW pragma does
not support such access patterns that involve reuse. As a
result, SDAccel requires larger array partitioning and loop
unrolling factors to offset the performance impact, at the ex-
pense of consuming more FPGA BRAM. In addition, nested
controllers in GEMM can be parallelized and pipelined inde-
pendently in Spatial, while SDAccel automatically unrolls all
inner loops if an outer loop is parallelized. Spatial can there-
fore explore design points that cannot be easily expressed
in SDAccel. Finally, as the Spatial compiler performs anal-
yses on a parameterized IR, the compiler can reason about
larger parallelization factors without expanding the IR graph.
SDAccel unrolls the graph as a preprocessing step, hence
creating larger graphs when unrolling and array partition-
ing factors are large. This has a significant impact on the
compiler’s memory footprint and compilation times, making
better designs difficult or impossible to find.

Spatial provides a productive platform to program FPGAs,
with a 42% reduction in lines of code compared to SDAccel
averaged across all benchmarks. On the studied benchmarks,
Spatial achieves a geometric mean speedup of 2.9× compared
to an industrial HLS tool.

5.2 Design Space Exploration
We next perform a preliminary evaluation of HyperMapper
for quickly approximating Pareto frontier over two design
objectives: design runtime and FPGA logic utilization (LUTs).
For this evaluation, we run HyperMapper with several seeds
of initial random sample, with the number of samples R
ranging from 1 to 6000 designs, and run 5 active learning
iterations of at most 100 samples each. For comparison, the
heuristic search proposed in the DHDL work [22] prunes

(a) HyperMapper HVI versus
initial random samples (R) five
number summary.

(b) Exhaustive and HyperMap-
per (R=1000) generated Pareto
curves.

Figure 6. Design space tuning on BlackScholes.

using simple heuristics and then randomly samples up to
100,000 points. For both approaches, design tuning takes up
to 1 – 2 minutes, varying slightly by benchmark complexity.

Figure 6a shows the hypervolume indicator (HVI) function
for the BlackScholes benchmark as a function of the initial
number of random samples. The HVI gives the area between
the estimated Pareto frontier and the space’s true Pareto
curve, found from exhaustive search. By increasing the num-
ber of random samples to bootstrap the active learning phase,
we see two orders of magnitude improvement in HVI. Fur-
thermore, the overall variance goes down very quickly as
the number of random samples increases. As a result, the
autotuner is robust to randomness and only a handful of
random samples are needed to bootstrap the active learning
phase. As shown in Figure 6b, HyperMapper is able to reach
a close approximation of the true Pareto frontier with less
than 1500 design points.

On benchmarks like GDA with sparser design spaces, Hy-
perMapper spends much of its time evaluating areas of the
space with invalid designs which cannot fit on the FPGA. Hy-
perMapper’s accuracy for these benchmarks is consequently
lower than the heuristic approach. Consequently, in future
work, we plan to extend HyperMapper with a valid design
prediction mechanism and evaluate this tuning approach on
a wider class of benchmarks.

5.3 Spatial Portability
We next demonstrate the portability of Spatial code by tar-
geting two different FPGA architectures; (1) the Zynq ZC706
SoC board, and (2) The Virtex Ultrascale+ VU9P on the Ama-
zon EC2 F1. Designs on the VU9P use a single DRAM chan-
nel with a peak bandwidth of 19.2 GB/s. The ZC706 is much
smaller than the VU9P in terms of FPGA resource and has a
smaller DRAM bandwidth of 4.26 GB/s. We target both the
ZC706 and VU9P from the same Spatial code for all bench-
marks listed in Table 2. Benchmarks are tuned for each target
using target-specific models with automated DSE. Clock fre-
quency is fixed at 125 MHz for both FPGAs.
Table 3 shows the speedups achieved on the VU9P over

the ZC706. The results show that not only can the same
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Table 3. Runtimes (ms) of tuned designs on ZC706, followed
by runtimes and speedup (×) of directly porting these designs
to the VU9P, then runtimes and successive speedup over
ported designs when tuned for the VU9P. The Total column
shows the cumulative speedup.

FPGA ZC706 VU9P Total
Design Tuned Ported Tuned

Time Time × Time × ×

BS 89.0 35.6 2.5 3.8 9.4 23.4

GDA 8.4 3.4 2.5 1.3 2.6 6.5

GEMM 2226.5 1832.6 1.2 878.5 2.1 2.5

KMeans 358.4 143.4 2.5 53.3 2.7 6.7

PageRank 1299.5 1003.3 1.3 587.4 1.7 2.2

SW† 1.3 0.5 2.5 0.5 1.0 2.5

TQ6 69.4 15.0 4.6 14.0 1.1 5.0
†SW with 160 base pairs, the largest to fit on the ZC706.

Table 4. Plasticine DRAM bandwidth, resource utilization,
runtime, and speedup (×) over VU9P FPGA.

Avg DRAM Resource
BW (%) Utilization (%) Time ×

App Load Store PCU PMU AG (ms)

BS 77.4 12.9 73.4 10.9 20.6 2.33 1.6
GDA 24.0 0.2 95.3 73.4 38.2 0.13 9.8
GEMM 20.5 2.1 96.8 64.1 11.7 15.98 55.0
KMeans 8.0 0.4 89.1 57.8 17.6 8.39 6.3
TQ6 97.2 0.0 29.7 37.5 70.6 8.60 1.6

Spatial source code be ported to architectures with differ-
ent capabilities, the application can also be automatically
tuned to better take advantage of resources in each target.
Compute-bound benchmarks BlackScholes, GDA, GEMM, K-
Means achieve speedups of up to 23× on the VU9P over the
ZC706. Porting these designs to the VU9P alone has a 1.2×
to 2.5× due to increased main memory bandwidth, but a ma-
jority of the benefit of the larger FPGA comes from tuning
the parallelization factors to use more resources. While SW
is also compute bound, the size of the dataset was limited
by the smaller FPGA. In this case, the larger capacity of the
VU9P does not improve runtime, but instead allows handling
of larger datasets.
Memory-bound benchmark TPC-H Q6 benefits from the

higher DRAM bandwidth available on the VU9P. Porting
this benchmark immediately gives a 4.6× runtime improve-
ment from the larger main memory bandwidth, while fur-
ther parallelizing controllers to create more parallel address
streams to DRAM helps the application make better use
of this bandwidth. PageRank is also bandwidth-bound, but
the primary benefit on the VU9P comes from specializing
the memory controller to maximize utilized bandwidth for
sparse accesses.

Finally, we demonstrate the portability of Spatial beyond
FPGA architectures by extending the compiler to map the

Spatial IR to target our proposed Plasticine CGRA [32]. Plas-
ticine is a two-dimensional array of compute (PCUs) and
memory (PMUs) tiles with a statically configurable intercon-
nect and address generators (AG) at the periphery to perform
DRAM accesses. The Plasticine architecture is a significant
departure from an FPGA, with more constraints on memory
banking and computation, including fixed size, pipelined
SIMD lanes.

We simulate Plasticine with a 16 × 8 array of 64 compute
and 64 memory tiles, with a 1 GHz clock and a main memory
with a DDR3-1600 channel with 12.8 GB/s peak bandwidth.
Table 4 shows the DRAM bandwidth, resource utilization,
runtime, and speedup of the Plasticine CGRA over the VU9P
for a subset of benchmarks.

Streaming, bandwidth-bound applications like TPC-H Q6
efficiently exploit about 97% of the available DRAM band-
width. Compute-bound applications GDA, GEMM, and K-
Means use around 90% of Plasticine’s compute tiles. Plas-
ticine’s higher on-chip bandwidth also allows these applica-
tions to better utilize the compute resources, giving these
applications speedups of 9.9×, 55.0×, and 6.3×. Similarly,
the deep compute pipeline in BlackScholes occupies 73.4%
of compute resources after being split across multiple tiles,
giving a speedup of 1.6×.

6 Related Work
We conclude with a qualitative comparison of Spatial to
related work, drawing from the criteria in Section 2.

HDLs Hardware description languages like Verilog and
VHDL are designed for arbitrary circuit description. In or-
der to achieve maximum generality, they require users to
explicitly manage timing, control signals, and local memo-
ries. Loops are expressed by state machines in flattened RTL.
One exception to this is Bluespec SystemVerilog [8], which
supports state machine inference from nested while loops.
Recent advancements in HDLs have largely been aimed at
meta-programming improvements and increasing the size
of hardware module libraries. Languages like Chisel [9], My-
HDL [1] and VeriScala [23] make procedural generation of
circuits simpler by embedding their HDL in a software lan-
guage (e.g. Scala or Python). Similarly, Genesis2 [37] adds
Perl scripting support to SystemVerilog to help drive proce-
dural generation. While these improvements allow for more
powerful meta-programming compared to Verilog generate

statements, users still write programs at a timed circuit level.

Lime Lime is a Java-based programming model and run-
time from IBM which aims to provide a single unified lan-
guage to program heterogeneous architectures. Lime na-
tively supports custom bit precisions and includes collection
operations, with parallelism in such operations inferred by
the compiler. Coarse-grained pipeline and data parallelism
are expressed through “tasks”. Coarse-grained streaming
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computation graphs can be constructed using built-in con-
structs like connect, split, and join. The Lime runtime sys-
tem handles buffering, partitioning, and scheduling of stream
graphs. However, coarse-grained pipelines which deviate
from the streaming model are not supported, and the pro-
grammer has to use a low-level messaging API to handle
coarse-grained graphs with feedback loops. Additionally, the
compiler does not perform automatic design tuning. Finally,
the compiler’s ability to instantiate banked and buffered
memories is unclear as details on banking multi-dimensional
data structures for arbitrary access patterns are not specified.

HLS High-level synthesis tools such as LegUp [12], Vivado
HLS [3], Intel’s FPGA SDK for OpenCL [5], and SDAccel [42]
allow users to write FPGA designs in C/C++ and OpenCL.
Using these tools, applications can be expressed at a high
level, in terms of arrays and untimed, nested loops. However,
while inner loop pipelining, unrolling, and memory banking
and buffering are done by the compiler, they generally re-
quire explicit user pragmas. While previous work has used
polyhedral tools to automate banking decisions for affine
accesses within a single loop nest [41], it does not address
non-affine cases or cases where accesses to the same mem-
ory occur in multiple loop nests. While pragmas like Vivado
HLS’s DATAFLOW enable limited support for pipelining
nested loops, pipelining at arbitrary loop nest levels is not
yet supported [2]. Tools like Aladdin [38] have also been
created to help automate the process of tuning the pragmas
in HLS programs, but designs in HLS still require manual
hardware optimization [26].

MaxJ MaxJ is a proprietary language created by Maxeler
which allows users to express dataflow algorithms in Java
libraries, emphasizing timing at the level of “ticks“ of valid
streaming elements rather than cycles. [24]. Users must fall
back to flattened, HDL-like syntax for state machines when
writing nested loops. Memories are inferred based on relative
stream offsets, which, while convenient for stream process-
ing, hides hardware implementation details from the user
which could otherwise help drive optimization. Additionally,
MaxJ has limited portability, as it currently can only be used
to target supported Maxeler FPGA platforms.

DHDL The Delite Hardware Definition Language (DHDL)
[22] is a precursor to Spatial, in that it allows program-
mers to describe untimed, nested, parallelizable hardware
pipelines and compile these to hardware. While DHDL sup-
ports compiler-aware design parameters and automatic de-
sign tuning, it has no support for data-dependent control
flow, streaming, or memory controller specialization. DHDL
also has no support for generalized memory banking or
buffering and relies on its backend, MaxJ, for retiming and
initiation interval calculation.

Image Processing DSLs Recently proposed image process-
ing DSLs provide high-level specifications for targeting vari-
ous accelerator platforms, including GPUs and FPGAs.The
narrow domain allows these DSLs to offer more concise
abstractions for specifying stencil operations. When target-
ing accelerators, these languages usually rely on source-to-
source translation. HIPACC [25], for example, uses a source-
to-source compiler from aC-like front-end to generate CUDA,
OpenCL, and Renderscript for targeting GPUs. Recent work
on Halide [35] has demonstrated targeting heterogeneous
systems, including the Xilinx Zynq’s FPGA and ARM cores,
by generating intermediate C++ andVivadoHLS [33]. Rigel [20]
and Darkroom [19] generate Verilog, and PolyMage [14] gen-
erates OpenMP and C++ for high-level synthesis. Rigel and
Darkroom support generation of specialized memory struc-
tures on FPGAs, such as line buffers, in order to capture
reuse. HIPACC can infer memory hierarchy on GPUs from
a fix set of access patterns. These DSLs capture parallelism
within a given stencil, typically across image channels and
across the image processing pipeline.

Compared to image processing DSLs, Spatial is more gen-
eral and provides a lower level of abstraction. Spatial can
express pipelining and unrolling for arbitrary loop hierar-
chies and explicitly exposes the memory hierarchy while
automatically banking, buffering, and duplicating structures
for arbitrary access patterns. These features, along with Spa-
tial’s design tuning capabilities, make Spatial a natural fit as
an optimizing backend target for image processing DSLs.

7 Conclusion
In this work, we presented Spatial, a new domain-specific
language for the design of application accelerators on recon-
figurable architectures. Spatial includes hardware-specific ab-
stractions for control, memory, and design tuning which help
to provide a balance between productive and performance-
driven accelerator design.We have demonstrated that Spatial
can target a range of reconfigurable architectures from a sin-
gle source, and can achieve average speedups of 2.9× over
SDAccel with 42% less code.
The Spatial language and compiler is an ongoing, open

source project at Stanford. Related documentation and re-
leases can be found at https://spatial.stanford.edu.

A Appendix
A.1 Memory Banking and Buffering
Figure 7 gives pseudocode for Spatial’s algorithm to bank
and buffer accesses to a given memory m across loop nests.
For each access a tom, we first define an iteration domain D
for that access. This domain is the multi-dimensional space
of possible values of all loop iterators for all loops which
contain a but which do not containm.
We then group read and write accesses onm into “com-

patible” sets which occur in parallel to the same physical
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1 function GroupAccesses:
2 input: A → set of reads or writes to m
3
4 G = ∅ set of sets of compatible accesses
5
6 for all accesses a in A:
7 for all sets of accesses д in G:
8 if IComp(a, a′) for all a′ in д then
9 add a to д
10 break
11 else add {a} to G
12
13 return G
14 end function
15
16 function ConfigureMemory:
17 input: Ar → set of reads of m
18 input: Aw → set of writes to m
19
20 Gr = GroupAccesses(Ar )
21 Gw = GroupAccesses(Aw)
22
23 I = ∅ set of memory instances
24
25 for all read sets R in Gr :
26 Ir = {R}
27 Iw = ReachingWrites(Gw, Ir )
28 i = BankAndBuffer(Ir , Iw)
29 for each inst in I:
30 I ′r = ReadSets[inst] + R
31 I ′w = ReachingWrites(Gw, I ′r )
32 if OComp(A1,A2) ∀A1 , A2 ∈ (Gw ∪ I ′r ) then:
33 i′ = BankAndBuffer(I ′r , I ′w)
34 if Cost(i′) < Cost(i) + Cost(inst) then:
35 remove inst from I
36 add i′ to I
37 break
38
39 if i has not been merged then add i to I
40
41 return I
42 end function

Figure 7. Banking and buffering algorithm for calculating
instances of on-chip memorym.

port but which can be banked together (lines 1 – 14). Two
accesses a1 and a2 within iteration domains D1 and D2 are
banking compatible (IComp) if

IComp (a1,a2) = ∄ i⃗ ∈ (D1 ∪ D2) s .t . a1 (⃗i ) = r2 (⃗i )

where a(i ) is the multi-dimensional address corresponding
to access a for some vector of iterator values i . This check
can be implemented using a polytope emptiness test.

After grouping, each group could be directly mapped to a
coherent “instance”, or copy, ofm. However, this approach
would typically use more resources than required. To mini-
mize the total number of memory instances, we next greedily
merge groups together (lines 25 – 39). Merging is done when
the cost of a merged instance is less than the cost of adding
a separate, coherent instance for that group. Two sets of
accesses A1 and A2 allow merging (OComp) if

OComp (A1,A2) = ∄ (a1 ∈ A1,a2 ∈ A2) s .t .

LCA(a1,a2) ∈ Parallel ∪ (Pipe ∩ Inner )

where Parallel, Pipe, and Inner are the set of Parallel, pipelined,
and inner controllers in the program, respectively. If this con-
dition holds, all accesses between the two instances either
occur sequentially or occur as part of a coarse-grain pipeline.
Sequential accesses can be time multiplexed, while pipelined
accesses are buffered.
ReachingWrites returns all writes in each set which may

be visible to any read in the given sets of reads. Visibility is
possible if the write may be executed before the read and
may have an overlapping address space.
The BankAndBuffer function produces a single memory

instance from memory reads and writes. Here, each set of ac-
cesses is a set of parallel reads or writes to a single port of the
memory instance. Accesses in different sets are guaranteed
not to occur to the same port at the same time. Therefore, a
common banking strategy is found which has no bank con-
flicts for any set of accesses. This banking strategy is found
using iterative polytope emptiness testing as described by
Wang et. al. [41]. A separate emptiness test is run for each
set of parallel accesses for each proposed strategy.
The required buffer depth d for a pair of accesses a1 and

a2 tom is computed as

d (a1,a2) =

{
1 LCA(a1,a2) ∈ Seq ∪ Stream

dist (a1,a2) LCA(a1,a2) ∈ Pipe

where dist is the minimum of the depth of the LCA and
the dataflow distance of the two direct children of the LCA
which contain a1 and a2. Seq, Stream, and Pipe are the set of
sequential, streaming, and pipelined controllers, respectively.
Buffering addressable memories across streaming accesses
is currently unsupported. The depth of a set of reads R and
writesW is then

Depth(R,W ) =max {d (w,a) ∀ (w,a) ∈W × (W ∪ R)}

The port of each access within a buffer is determined from
the relative distances between all buffered accesses. Spatial
requires that no more than one coarse-grained controller
or streaming controller is part of a merged instance. The
final output of the greedy search is a set of required physical
memory instances for memory m.
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